計算
(1)(-
3
2
)÷
5
4
×(-2.5);
(2)(1-23×
5
4
)÷(-3)2
(3)3×
7
-3×(
(-2)2
+
7
);
(4)35÷(
1
5
-
1
7
).
考點:實數(shù)的運算
專題:
分析:(1)按照實數(shù)的運算法則計算即可;
(2)先計算括號里面的,然后去括號,按照實數(shù)的運算法則計算即可;
(3)先進(jìn)行乘法運算,然后相減求解即可.
(4)先計算括號里面的,然后去括號求解.
解答:解:(1)原式=-
3
2
×
4
5
×(-2.5)=3;

(2)原式=(1-10)×
1
9
=-1;

(3)原式=3
7
-6-3
7
=-6;

(4)原式=35÷
2
35
=35×
35
2
=
1225
2
點評:本題考查了實數(shù)的運算,掌握實數(shù)的運算法則是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

不等式4x-3>5的解是( 。
A、x=2B、x>-2
C、x<2D、x>2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在△ABC中,∠C=90°,AC=4,BC=3,若以點C為圓心的圓與線段AB有公共點,則⊙C的半徑r的取值范圍是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,∠BAC=90°,AB=AC,AE是過點A的直線,BD⊥AE,CE⊥AE,垂足分別是D、E,若CE=3,BD=8,則DE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,經(jīng)過原點O的拋物線y=ax2-4ax交x軸于點A,頂點B在正比例函數(shù)y=2x的圖象上.
(1)求拋物線的解析式;
(2)在拋物線上取點P,使得點B關(guān)于直線OP對稱的對稱點B′剛好在x軸上,求點P的坐標(biāo);
(3)若點M在直線OB上,點N在x軸上,求PM+MN+PN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=x2+bx+c與y軸交于點C(0,3),與x軸交于A(3,0),B兩點(點A在點B的右側(cè)),過C作直線l,與拋物線相交于點D(5,8),與對稱軸交于點N,點P(m,n)為直線l上的一個動點,過P作x軸的垂線交拋物線于點G,設(shè)線段PG的長度為d
(1)求該拋物線的函數(shù)解析式;
(2)當(dāng)0<m<5時,請用含m的代數(shù)式表示d,求出d的最大值;
(3)是否存在這樣的點P,使以M,N,P,G為頂點的四邊形是平行四邊形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,拋物線過原點O,且與x軸交于另一點A(A在O右側(cè)),頂點為B.艾思軻同學(xué)用一把寬3cm的矩形直尺對拋物線進(jìn)行如下測量:
(1)量得OA=3cm;
(2)當(dāng)把直尺的左邊與拋物線的對稱軸重合,使得直尺左下端點與拋物線的頂點重合時(如圖),測得拋物線與直尺右邊的交點C的刻度讀數(shù)為4.5cm.
艾思軻同學(xué)將A的坐標(biāo)記作(3,0),然后利用上述結(jié)論嘗試完成下列各題:
①寫出拋物線的對稱軸;
②求出該拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知甲、乙、丙三數(shù),甲=6+
23
,乙=2+
27
,丙=
29
,則甲、乙、丙的大小關(guān)系為( 。
A、甲=乙=丙
B、丙<甲<乙
C、甲<丙<乙
D、丙<乙<甲

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2-(m+2)x+2m-1=0.
(1)試說明無論m為何值,方程總有兩個不相等的實數(shù)根;
(2)若此方程的兩根分別是p和3,試求|p-3|的值.

查看答案和解析>>

同步練習(xí)冊答案