【題目】某路公交車起點站設(shè)在一居民小區(qū)附近,為了解高峰時段從該起點站乘車出行的人數(shù),隨機抽查了高峰時段10個班次從該起點站乘車的人數(shù),結(jié)果如下:20、23、26、25、29、28、30、25、21、23.如果在高峰時段從該起點站共發(fā)車60個班次,那么估計在高峰時段從該起點站乘該路車出行的乘客一共有________人.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角梯形OABC的邊OA在y軸的正半軸上,OC在x軸的正半軸上,OA=AB=2,OC=3,過點B作BD⊥BC,交OA于點D.將∠DBC繞點B按順時針方向旋轉(zhuǎn),角的兩邊分別交y軸的正半軸、x軸的正半軸于E和F.
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)當(dāng)BE經(jīng)過(1)中拋物線的頂點時,求CF的長;
(3)連結(jié)EF,設(shè)△BEF與△BFC的面積之差為S,問:當(dāng)CF為何值時S最小,并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p,q都是實數(shù),且p<q.我們規(guī)定:滿足不等式p≤x≤q的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[p,q].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當(dāng)p≤x≤q時,有p≤y≤q,我們就稱此函數(shù)是閉區(qū)間[p,q]上的“閉函數(shù)”.反比例函數(shù)y=是閉區(qū)間[1,2019]上的“閉函數(shù)”嗎?請判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象分別交x軸、y軸于A、B兩點,與反比例函數(shù)y=的圖象交于C、D兩點,DE⊥x軸于點E,已知C點的坐標(biāo)是(﹣6,﹣1),DE=3.
(1)求反比例函數(shù)與一次函數(shù)的解析式.
(2)根據(jù)圖象直接回答:當(dāng)x為何值時,一次函數(shù)的值小于反比例函數(shù)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘.在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t
(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了30分鐘;
③乙用16分鐘追上甲;
④乙到達(dá)終點時,甲離終點還有320米
其中正確的結(jié)論有( 。
A. 1 個B. 2 個C. 3 個D. 4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知△ABC頂點坐標(biāo)分別為A(0,3),B(1,1),C(﹣3,﹣1),△DEF與△ABC關(guān)于y軸對稱,且A,B,C依次對應(yīng)D,E,F,
(1)請寫出D,E,F的坐標(biāo).
(2)在平面直角坐標(biāo)系中畫出△ABC和△DEF.
(3)經(jīng)過計算△DEF各邊長度,發(fā)現(xiàn)DE、EF、FD滿足什么關(guān)系式,寫出關(guān)系式.
(4)求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶承包荒山種了44棵蘋果樹.現(xiàn)在進(jìn)入第三年收獲期.收獲時,先隨意摘了5棵樹上的蘋果,稱得每棵樹摘得的蘋果重量如下(單位:千克)35 35 34 39 37
(1)在這個問題中,總體指的是?個體指的是?樣本是?樣本容量是?
(2)試根據(jù)樣本平均數(shù)去估計總體情況,你認(rèn)為該農(nóng)戶可收獲蘋果大約多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有兩條互相垂直的公路,A廠離公路的距離為2千米,離公路的距離為5千米;B廠離公路的距離為11千米,離公路的距離為4千米;現(xiàn)在要在公路上建造一倉庫P,使A廠到P倉庫的距離與B廠到P倉庫的距離相等,求倉庫P的位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九年級學(xué)生到距離學(xué)校6千米的百花公園去春游,一部分學(xué)生步行前往,20分鐘后另一部分學(xué)生騎自行車前往,設(shè)(分鐘)為步行前往的學(xué)生離開學(xué)校所走的時間,步行學(xué)生走的路程為千米,騎自行車學(xué)生騎行的路程為千米,關(guān)于的函數(shù)圖象如圖所示.
(1)求關(guān)于的函數(shù)解析式;
(2)步行的學(xué)生和騎自行車的學(xué)生誰先到達(dá)百花公園,先到了幾分鐘?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com