【題目】已知點(diǎn)P位于x軸上方,到x軸的距離為2,到y軸的距離為5,則點(diǎn)P坐標(biāo)為( )

A. (2,5)B. (5,2)C. (25)(-2,5)D. (52)(-5,2)

【答案】D

【解析】

由點(diǎn)P位于x軸上方可得點(diǎn)P的縱坐標(biāo)大于0,所以點(diǎn)P的縱坐標(biāo)為2,由于點(diǎn)P相對(duì)于y軸的位置不確定,所以點(diǎn)P的橫坐標(biāo)為5或﹣5.

由題意得P(5,2)或(﹣5,2).

故選D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若△ABC在第一象限,則△ABC關(guān)于x軸對(duì)稱的圖形所在的位置是( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】測量計(jì)算是日常生活中常見的問題,如圖,建筑物BC的屋頂有一根旗桿AB,從地面上D點(diǎn)處觀測旗桿頂點(diǎn)A的仰角為50°,觀測旗桿底部B點(diǎn)的仰角為45°,(可用的參考數(shù)據(jù):sin50°≈0.8,tan50°≈1.2)

(1)若已知CD=20米,求建筑物BC的高度;

(2)若已知旗桿的高度AB=5米,求建筑物BC的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,BC=6cm. 射線AG//BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).

(1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:ADE≌△CDF;

(2)填空:當(dāng)t為_________s時(shí),四邊形ACFE是菱形;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(x+m)(x+n)=x2 -6x+5,則( 。
A.mn同時(shí)為負(fù)
B.m , n同時(shí)為正
C.mn異 號(hào)
D.m , n異號(hào)且絕對(duì)值小 的為正

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題探究:

1.新知學(xué)習(xí)

若把將一個(gè)平面圖形分為面積相等的兩個(gè)部分的直線叫做該平面圖形的“面線”,其“面線”被該平面圖形截得的線段叫做該平面圖形的“面徑”(例如圓的直徑就是圓的“面徑”).

2.解決問題

已知等邊三角形ABC的邊長為2.

(1)如圖一,若AD⊥BC,垂足為D,試說明AD是△ABC的一條面徑,并求AD的長;

(2)如圖二,若ME∥BC,且ME是△ABC的一條面徑,求面徑ME的長;

(3)如圖三,已知D為BC的中點(diǎn),連接AD,M為AB上的一點(diǎn)(0<AM<1),E是DC上的一點(diǎn),連接ME,ME與AD交于點(diǎn)O,且S△MOA=S△DOE

①求證:ME是△ABC的面徑;

②連接AE,求證:MD∥AE;

(4)請(qǐng)你猜測等邊三角形ABC的面徑長l的取值范圍(直接寫出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD是矩形ABCD的對(duì)角線.

(1)用直尺和圓規(guī)作線段BD的垂直平分線,分別交AD、BC于E、F(保留作圖痕跡,不寫作法和證明).

(2)連結(jié)BE,DF,問四邊形BEDF是什么四邊形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的進(jìn)價(jià)為800元,出售標(biāo)價(jià)為1200元,后來由于該商品積壓,商店準(zhǔn)備打折銷售,要保證利潤率不低于5%,該商品最多可打 ( )

A. 9B. 8C. 7D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓品質(zhì)相同,銷售價(jià)格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進(jìn)園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進(jìn)園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設(shè)某游客的草莓采摘量為x(千克),在甲采摘園所需總費(fèi)用為(元),在乙采摘園所需總費(fèi)用為(元),圖中折線OAB表示與x之間的函數(shù)關(guān)系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價(jià)格是每千克 元;

(2)求、與x的函數(shù)表達(dá)式;

(3)在圖中畫出與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費(fèi)用較少時(shí),草莓采摘量x的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案