已知拋物線y=x2-2(k-2)x+1經(jīng)過(guò)點(diǎn)A(-1,2)
(1)求此拋物線的解析式;
(2)求此拋物線的頂點(diǎn)坐標(biāo)與對(duì)稱軸.
分析:(1)將A坐標(biāo)代入拋物線解析式中,求出k的值,確定出拋物線解析式即可;
(2)找出a,b及c的值,代入頂點(diǎn)坐標(biāo)公式確定出頂點(diǎn)坐標(biāo)及對(duì)稱軸.
解答:解:(1)將A(-1,2)代入y=x2-2(k-2)x+1得:2=1-2(k-2)+1,
解得:k=2,
則拋物線解析式為y=x2+1;
(2)對(duì)于二次函數(shù)y=x2+1,a=1,b=0,c=1,
∴-
b
2a
=0,
4ac-b2
4a
=1,
則頂點(diǎn)坐標(biāo)(0,1);對(duì)稱軸為直線x=0(y軸).
點(diǎn)評(píng):此題考查了利用待定系數(shù)法求二次函數(shù)的解析式,用待定系數(shù)法求函數(shù)的解析式時(shí)要靈活地根據(jù)已知條件選擇配方法和公式法,這種方法是數(shù)學(xué)中一種重要的數(shù)學(xué)方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=x2-8x+c的頂點(diǎn)在x軸上,則c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點(diǎn)都在原點(diǎn)O的左側(cè);
(2)若拋物線與y軸交于點(diǎn)C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過(guò)A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
(1)求b、c的值;
(2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線沿y軸上下平移后經(jīng)過(guò)點(diǎn)C,求平移后所得拋物線的表達(dá)式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,若點(diǎn)P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案