【題目】實踐活動小組要測量旗桿的高度,現(xiàn)有標桿、皮尺.小明同學站在旗桿一側(cè),通過觀視和其他同學的測量,求出了旗桿的高度,請完成下列問題:
(1)小明的站點,旗桿的接地點,標桿的接地點,三點應(yīng)滿足什么關(guān)系?
(2)在測量過程中,如果標桿的位置確定,小明應(yīng)該通過移動位置,直到小明的視點與點 在同直一線上為止;
(3)他們都測得了哪些數(shù)據(jù)就能計算出旗桿的高度?請你用小寫字母表示這些數(shù)據(jù)(不允許測量多余的數(shù)據(jù));
(4)請用(3)中的數(shù)據(jù),直接表示出旗桿的高度.
【答案】 三點在同一條直線上;和點;答案不唯一:測量的長就能計算出旗桿的高度,設(shè)測得;
【解析】
過C點作DB的平行線,與EF交于M點,與AB交于N點,測量旗桿高是根據(jù)△CME∽△CNA進行計算的,所以(1)小明的站點,旗桿的接地點,標桿的接地點,三點必須在同一直線上;(2)在測量過程中,如果標桿的位置確定,小明應(yīng)該通過移動位置,直到小明的視點點與A、E點都在同直一線上為止;(3)根據(jù)相似三角形成比例測量的長就能計算出旗桿的高度,設(shè)測得;(4)根據(jù)△CME∽△CAN,寫出比例式,表示出AN,然后AB=AN+BN即可得到答案
如圖,過C點作DB的平行線,與EF交于M點,與AB交于N點
(1)小明的站點,旗桿的接地點,標桿的接地點,三點必須在同一直線上;
(2)在測量過程中,如果標桿的位置確定,小明應(yīng)該通過移動位置,直到小明的視點點與A、E點都在同直一線上為止;
(3)根據(jù)相似三角形成比例測量的長就能計算出旗桿的高度,設(shè)測得 ;
(4)易知△CME∽△CAN,有,CM=DF=c,EM=EF-MF=b-a,CN=DF+FB=c+d,即有,解得AN=,所以AB=
科目:初中數(shù)學 來源: 題型:
【題目】股民李明上星期六買進春蘭公司股票1000股,每股27元.下表為本周內(nèi)每日該股票的漲跌情況(單位:元)(注:本周一股票漲跌是在上周六的基礎(chǔ)上,用正數(shù)記股價比前一日上升數(shù),用負數(shù)記股價比前一日下降數(shù))
星期 | 一 | 二 | 三 | 四 | 五 | 六 |
每股漲跌 | +4 | +4.5 | -1 | -2.5 | -6 | +2 |
(1)星期三收盤時,每股是多少元?
(2)本周內(nèi)最高價是每股多少元?最低價每股多少元?
(3)己知李明買進股票時付了0.15%的手續(xù)費,賣出時需付成交額0.15%的手續(xù)費和0.1%的交易稅,如果李明在星期六收盤前將全部股票賣出,他的收益情況如何?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:(p,q是正整數(shù),且),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的完美分解.并規(guī)定:.
例如18可以分解成1×18,2×9或3×6,因為18-1>9-2>6-3,所以3×6是18的完美分解,所以F(18)=.
(1)F(13)= ,F(24)= ;
(2)如果一個兩位正整數(shù)t,其個位數(shù)字是a,十位數(shù)字為,交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為36,那么我們稱這個數(shù)為“和諧數(shù)”,求所有“和諧數(shù)”;
(3)在(2)所得“和諧數(shù)”中,求F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:在分式中,對于只含有一個字母的分式,當分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”,如:。當分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”,如:。假分式可以化為整式與真分式和的形式,我們也稱之為帶分式,如:。
解決問題:
(1)下列分式中屬于真分式的是( )
A. B. C. D.
(2)將假分式分別化為帶分式;
(3)若假分式的值為整數(shù),請直接寫出所有符合條件的整數(shù)x的值。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的方程x2+(2k-1)x+k2-1=0有兩個實數(shù)根x1,x2.
(1)求實數(shù)k的取值范圍;
(2)若x1,x2滿足x12+x22=16+x1x2,求實數(shù)k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)為了綠化環(huán)境,計劃分兩次購進A、B兩種樹苗,第一次分別購進A、B兩種樹苗30棵和15棵,共花費675元;第二次分別購進A、B兩種樹苗12棵和5棵,共花費265元.兩次購進的A、B兩種樹苗價格均分別相同.
(1)A、B兩種樹苗每棵的價格分別是多少元?
解:設(shè)A種樹苗每棵x元,B種樹苗每棵y元
根據(jù)題意列方程組,得: ;
解這個方程組,得: ;
答: .
(2)若購買A、B兩種樹苗共31棵,且購買樹苗的總費用不超過320元,則最多可以購買A種樹苗多少棵?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,為的中點,,.動點從點出發(fā),沿方向以的速度向點運動;同時動點從點出發(fā),沿方向以的速度向點運動,運動時間是秒.
(1)用含的代數(shù)式表示的長度.
(2)在運動過程中,是否存在某一時刻,使點位于線段的垂直平分線上?若存在,求出的值;若不存在,請說明理由.
(3)是否存在某一時刻,使?若存在,求出的值;若不存在,請說明理由.
(4)是否存在某一時刻,使?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,ABCD中,BE,CF分別是∠ABC和∠BCD的角平分線,BE,CF相交于點O.
(1)求證:BE⊥CF;
(2)試判斷AF與DE有何數(shù)量關(guān)系,并說明理由;
(3)當△BOC為等腰直角三角形時,四邊形ABCD是何特殊四邊形?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明早晨跑步,他從自己家出發(fā),向東跑了到達小彬家,繼續(xù)向東跑了到達小紅家,然后又向西跑了到達學校,最后又向東,跑回到自己家.
(1)以小明家為原點,以向東為正方向,用1個單位長度表示,在圖中的數(shù)軸上,分別用點A表示出小彬家,用點B表示出小紅家,用點C表示出學校的位置;
(2)求小彬家與學校之間的距離;
(3)如果小明跑步的速度是每分鐘0.25千米,那么小明這天早晨跑步一共用了多少分鐘?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com