如圖,BD是⊙O的直徑,過點D的切線交⊙O的弦BC的延長線于點E,弦AC∥DE交BD于點G
(1)求證:BD平分弦AC;
(2)若弦AD=5cm,AC=8cm,求⊙O的半徑.

【答案】分析:(1)由切線的性質(zhì)和圓周角定理即可證明BD平分AC;
(2)連接AO;設(shè)圓的半徑為r,則AO=r,OG=r-3,利用勾股定理的得到關(guān)于r的方程,解方程求出r的值即可.
解答:(1)證明:∵DE是⊙O的切線,且BD是直徑,
∴BD⊥DE
又∵AC∥DE,
∴BD⊥AC
∴BD平分AC;
(2)連接AO;
∵AG=GC,AC=8cm,
∴AG=4cm
在Rt△AGD中,由勾股定理得 GD=3cm,
設(shè)圓的半徑為r,則AO=r,OG=r-3
在Rt△AOG中,由勾股定理得 AO2=OG2+AG2
有:r2=(r-3)2+42
解得 
∴⊙O的半徑為cm.
點評:本題考查了切線的性質(zhì)定理、圓周角和勾股定理,是基礎(chǔ)知識要熟練掌握.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC是一個邊長為2的等邊三角形,D、E都在直線BC上,并且∠DAE=120°
(1)設(shè)BD=x,CE=y,求y與x直間的函數(shù)關(guān)系式;
(2)在上題中一共有幾對相似三角形,分別指出來(不必證明)
(3)改變原題的條件為AB=AC=2,∠BAC=β,∠DAE=α,α、β之間要滿足什么樣的關(guān)系,能使(1)中y與x的關(guān)系式仍然成立?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,等邊△ABC的邊AB與正方形DEFG的邊長均為2,且AB與DE在同一條直線上,開始時點B與點D重合,讓△ABC沿這條直線向右平移,直到點B與點E重合為止,設(shè)BD的長為x,△ABC與正方形DEFG重疊部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

泰勒斯是古希臘哲學家,相傳他利用三角形全等的方法求出岸上一點到海中一艘船的距離.如圖,B是觀察點,船A在B的正前方,過B作AB的垂線,在垂線上截取任意長BD,C是BD的中點,觀察者從點D沿垂直于BD的DE方向走,直到點E、船A和點C在一條直線上,那么△ABC≌△EDC,從而量出DE的距離即為船離岸的距離AB,這里判定△ABC≌△EDC的方法是( 。

查看答案和解析>>

科目:初中數(shù)學 來源:2012年重慶市開縣西街中學中考數(shù)學一模試卷(解析版) 題型:選擇題

如圖,等邊△ABC的邊AB與正方形DEFG的邊長均為2,且AB與DE在同一條直線上,開始時點B與點D重合,讓△ABC沿這條直線向右平移,直到點B與點E重合為止,設(shè)BD的長為x,△ABC與正方形DEFG重疊部分(圖中陰影部分)的面積為y,則y與x之間的函數(shù)關(guān)系的圖象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年黃岡教育陽江培訓中心中考數(shù)學模擬試卷(5)(解析版) 題型:解答題

如圖,△ABC是一個邊長為2的等邊三角形,D、E都在直線BC上,并且∠DAE=120°
(1)設(shè)BD=x,CE=y,求y與x直間的函數(shù)關(guān)系式;
(2)在上題中一共有幾對相似三角形,分別指出來(不必證明)
(3)改變原題的條件為AB=AC=2,∠BAC=β,∠DAE=α,α、β之間要滿足什么樣的關(guān)系,能使(1)中y與x的關(guān)系式仍然成立?說明理由.

查看答案和解析>>

同步練習冊答案