27、已知:如圖,點C為線段AB上一點,△ACM,△CBN都是等邊三角形,AN交MC于點E,BM交CN于點F.
(1)求證:AN=BM;
(2)求證:△CEF為等邊三角形.
分析:(1)由等邊三角形可得其對應(yīng)線段相等,對應(yīng)角相等,進(jìn)而可由SAS得到△CAN≌△MCB,結(jié)論得證;
(2)由(1)中的全等可得∠CAN=∠MCB,進(jìn)而得出∠MCF=∠ACE,由ASA得出△CAE≌△CMF,即CE=CF,又ECF=60°,所以△CEF為等邊三角形.
解答:證明(1):∵△ACM,△CBN是等邊三角形,
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
在△CAN和△MCB中,
AC=MC,∠ACN=∠MCB,NC=BC,
∴△CAN≌△MCB(SAS),
∴AN=BM.
(2)∵△CAN≌△MCB,
∴∠CAN=∠CMB,
又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,
∴∠MCF=∠ACE,
在△CAE和△CMF中,
∠CAE=∠CMF,CA=CM,∠ACE=∠MCF,
∴△CAE≌△CMF(ASA),
∴CE=CF,∴△CEF為等腰三角形,
又∵∠ECF=60°,∴△CEF為等邊三角形.
點評:本題主要考查了全等三角行的判定及性質(zhì)以及等邊三角形的判定問題,能夠掌握并熟練運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點E為?ABCD對角線AC上的一點,點F在BE的延長線上,且EF=BE,EF與CD相交于點G.
求證:DF∥AC.
(請用兩種方法證明,可以添輔助線,可以不添輔助線,如果兩種方法都添輔助線,要求是不同位置的線.)
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,點O為直線AB上一點,過點O在直線AB的同側(cè)作射線OD、OC、OE,且OD是∠AOC的平分線,∠DOE=90°,請判斷OE是否是∠BOC的平分線,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點P為線段AB上的動點(與A、B兩點不重合).在同一平面內(nèi),把線段AP、BP分別折成△CDP、△EFP,其中∠CDP=∠EFP=90°,且D、P、F三點共線.若△CDP、△EFP均為等腰三角形,且DF=2,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,點E為?ABCD對角線AC上的一點,點F在BE的延長線上,且EF=BE,EF與CD相交于點G.
求證:DF∥AC.
(請用兩種方法證明,可以添輔助線,可以不添輔助線,如果兩種方法都添輔助線,要求是不同位置的線.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,點O為直線AB上一點,過點O在直線AB的同側(cè)作射線OD、OC、OE,且OD是∠AOC的平分線,∠DOE=90°,請判斷OE是否是∠BOC的平分線,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案