【題目】如圖所示,能判斷AB∥CE的條件是( )
A. ∠A=∠ACE B. ∠A=∠ECD C. ∠B=∠BCA D. ∠B=∠ACE
【答案】A
【解析】
本題考查了平行線的判定。正確識別“三線八角”中的同位角、內(nèi)錯角、同旁內(nèi)角是正確答題的關鍵, 只有同位角相等、內(nèi)錯角相等、同旁內(nèi)角互補,才能推出兩被截直線平行.
A.∵∠A=∠ACE
∴AB∥CE
故此選項正確
B.∠A=∠ECD
這兩個角不是內(nèi)錯角、同位角、同旁內(nèi)角的關系,
∴不能判定AB∥CE,
故此選項錯誤;
C.∠B=∠BCA
這兩個角不是內(nèi)錯角、同位角、同旁內(nèi)角的關系,
∴不能判定AB∥CE,
故此選項錯誤;
D.∠B=∠ACE
這兩個角不是內(nèi)錯角、同位角、同旁內(nèi)角的關系,
∴不能判定AB∥CE,
故此選項錯誤;
故選A
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,點D是AB的中點,E.F在射線AC與射線CB上運動,且滿足AE=CF;當點E運動到與點C的距離為1時,則△DEF的面積為___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OD⊥AB于點O,分別交AC、CF于點E、D,且DE=DC.
(1)求證:CF是⊙O的切線;
(2)若⊙O的半徑為5,BC= ,求DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形網(wǎng)格中每個小正方形的邊長是1個單位長度).
(1)△A1B1C1是△ABC繞點逆時針旋轉度得到的,B1的坐標是;
(2)求出線段AC旋轉過程中所掃過的面積(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BE是線段AB的延長線,且∠CBE=∠A=∠C.
(1)由∠CBE=∠A可以判斷____∥_____,根據(jù)是_____________;
(2)由∠CBE=∠C可以判斷____∥_____,根據(jù)是_____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,直線AB交y軸于點A(0,1),交x軸于點B(3,0).直線x=1交AB于點D,交x軸于點E,P是直線x=1上一動點,在點D的上方,設P(1,n).
(1)求直線AB的解析式;
(2)求△ABP的面積(用含n的代數(shù)式表示);
(3)當S△ABP=2時,以PB為邊在第一象限作等腰直角三角形BPC,求出點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列一元一次方程解應用問題:
一個蓄水池裝有甲、乙兩個進水管和丙一個出水管,單獨開放甲管3小時可注滿一池水,單獨開放乙管6小時可注滿一池水,單獨開放丙管4小時可放盡一池水.
(1)若同時開放甲、乙、丙三個水管,幾小時可注滿水池?
(2)若甲管先開放1小時,而后同時開放乙、丙兩個水管,則共需幾小時可注滿水池?
(3)若甲管先開放1小時后關閉,而后同時開放乙、丙兩個水管,能注滿水池嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-1,-5),且與正比例函數(shù)y=x的圖象相交于點(2,a),求:
(1)a的值.
(2)k,b的值.
(3)這兩個函數(shù)圖象與x軸所圍成的三角形的面積。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com