【題目】如圖,在等腰直角三角形ABC中,∠C=90 o,AC=BC=4,點D是AB的中點,E.F在射線AC與射線CB上運動,且滿足AE=CF;當(dāng)點E運動到與點C的距離為1時,則△DEF的面積為___________.
【答案】或
【解析】解:①E在線段AC上.在△ADE和△CDF中,∵AD=CD,∠A=∠DCF,AE=CF,∴△ADE≌△CDF(SAS),∴同理△CDE≌△BDF,∴四邊形CEDF面積是△ABC面積的一半.∵CE=1,∴CF=4﹣1=3,∴△CEF的面積=CECF=,∴△DEF的面積=××﹣=.
②E'在AC延長線上.∵AE'=CF',AC=BC=4,∠ACB=90°,∴CE'=BF',∠ACD=∠CBD=45°,CD=AD=BD=,∴∠DCE'=∠DBF'=135°.在△CDE'和△BDF'中,∵CD=BD,∠DCE′=DBF′,CE′=BF′,∴△CDE'≌△BDF'(SAS),∴DE'=DF',∠CDE'=∠BDF'.∵∠CDE'+∠BDE'=90°,∴∠BDE'+∠BDF'=90°,即∠E'DF'=90°.∵DE'2=CE'2+CD2﹣2CDCE'cos135°=1+8+2××=13,∴S△E'DF'=DE'2=.故答案為: 或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB、CD、EF相交于點O,EF⊥AB,OG為∠COF的平分線,OH為∠DOG的平分線.
(1)若∠AOC∶∠COG=4∶7,求∠DOF的大;
(2)若∠AOC∶∠DOH=8∶29,求∠COH的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)要證明命題“平行四邊形的對邊相等.”是正確的,他畫出了圖形,并寫出了如下已知和不完整的求證.
已知:如圖,四邊形ABCD是平行四邊形.
求證:AB=CD,
(1)補全求證部分;
(2)請你寫出證明過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用數(shù)軸解決問題:我們知道,若數(shù)軸上點表示的數(shù)是,點表示的數(shù)是,則、兩點間的距離記作,.
(1)若,,則= ;
(2)若數(shù)軸上一點表示的數(shù)是,,則= ;
(3)若點表示的數(shù)是,已知,點在的左邊,,點在點的右邊,,點以每秒的速度向右移動,同時點、點分別以每秒、的速度向左移動.設(shè)移動時間為秒,那么是否有最小值?若有,求出最小值并寫出此時的取值范圍;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=48°,三角形的外角∠DAC和∠ACF的平分線交于點E,∠AEC等于( )
A.56° B.66° C.76° D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(3,0)兩點,且與y軸交于點C,點D是拋物線的頂點,拋物線的對稱軸DE交x軸于點E,連接BD.
(1)求經(jīng)過A,B,C三點的拋物線的函數(shù)表達式;
(2)點P是線段BD上一點,當(dāng)PE=PC時,求點P的坐標(biāo);
(3)在(2)的條件下,過點P作PF⊥x軸于點F,G為拋物線上一動點,M為x軸上一動點,N為直線PF上一動點,當(dāng)以F、M、G為頂點的四邊形是正方形時,請求出點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一垂直于地面的燈柱AB被一鋼筋CD固定,CD與地面成45°夾角(∠CDB=45°),在C點上方2米處加固另一條鋼線ED,ED與地面成53°夾角(∠EDB=53°),那么鋼線ED的長度約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,能判斷AB∥CE的條件是( )
A. ∠A=∠ACE B. ∠A=∠ECD C. ∠B=∠BCA D. ∠B=∠ACE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com