【題目】已知ABC中,ABAC

1)如圖1,在ADE中,若ADAE,且∠DAE=∠BAC,求證:CDBE;

2)如圖2,在ADE中,若∠DAE=∠BAC60°,且CD垂直平分AE,AD6CD8,求BD的長

【答案】1)詳見解析;(2BD=10.

【解析】

1)根據(jù)SAS證明BAECAD全等,再利用全等三角形的性質(zhì)證明即可;

2)根據(jù)等邊三角形的性質(zhì)和含30°的直角三角形的性質(zhì)解答即可.

解:(1)∵∠DAE=∠BAC,

∴∠BAE=∠CAD,

BAECAD中,

∴△BAE≌△CADSAS),

CDBE;

2)解:連接BE,如圖2所示:

ADAE,∠DAE60°,

∴△ADE是等邊三角形,

CD垂直平分AE,

∴∠CDAADE=×60°30°

∵△BAE≌△CAD,

BECD8,∠BEA=∠CDA30°,

BEDE,

DEAD6,

BD10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖,AD、BC相交于點O,OAOC,OBDODB.求證:ABCD

(2)如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點C的切線交AB的延長線于點D,若OD,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解決問題:(假設(shè)行車過程沒有停車等時,且平均車速為05千米/分鐘)

華夏專車

神州專車

里程費

1.8/千米

2/千米

時長費

0.3/分鐘

0.6/分鐘

遠途費

0.8/千米產(chǎn)(超過7千米部分)

起步價

10

華夏專車:車費由里程費、時長費、遠途費三部分構(gòu)成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;遠途費的收取方式為:行車?yán)锍?/span>7千米以內(nèi)(含7千米)不收遠途費,超過7千米的,超出的部分按每千米加收0.8元.

神州專車:車費由里程費、時長費、起步價三部分構(gòu)成,其中里程費按行車的實際里程計算;時長費按行車的實際時間計算;起步價與行車距離無關(guān).

1)小明在該地區(qū)出差,乘車距離為10千米,如果小明使用華夏專車,需要支付的打車費用為 元;

2)小強在該地區(qū)從甲地乘坐神州專車到乙地,一共花費42元,求甲乙兩地距離是多少千米?

3)神州專車為了和華夏專車競爭客戶,分別推出了優(yōu)惠方式,華夏專車對于乘車路程在7千米以上(7千米)的客戶每次收費立減9元;神州打車車費5折優(yōu)惠.對采用哪一種打車方式更合算提出你的建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰RtABC與等腰RtCDE,∠ACB=∠DCE=90°.RtABC繞點C旋轉(zhuǎn).

(1)如圖1,當(dāng)點A旋轉(zhuǎn)到ED的延長線時,若,BE=5,求CD的長;

(2)當(dāng)RtABC旋轉(zhuǎn)到如圖2所示的位置時,過點CBD的垂線交BD于點F,交AE于點G,求證:BD=2CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實驗室里,水平圓桌面上有甲乙丙三個圓柱形容器(容器足夠高),底面半徑之比為1:2:1,用兩根相同的管子在容器的5cm高度處連接(即管子底端離容器底5cm),現(xiàn)三個容器中,只有甲中有水,水位高1cm,如圖所示.若每分鐘同時向乙和丙注入相同量的水,開始注水1分鐘,乙的水位高度為cm,則開始注入________分鐘的水量后,甲與乙的水位高度之差是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EAB的中點,FE⊥AB,AF=2AE,F(xiàn)CBDO,則∠DOC的度數(shù)為________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平整的地面上,由若干個完全相同的棱長為10 cm的小正方體堆成一個幾何體,如圖①所示.

(1)請你在方格紙中分別畫出這個幾何體的主視圖和左視;

(2)若現(xiàn)在手頭還有一些相同的小正方體,如果保持這個幾何體的主視圖和俯視圖不變,

.在圖①所示幾何體上最多可以添加 個小正方體;

.在圖①所示幾何體上最多可以拿走 個小正方體;

.在題Ⅱ的情況下,把這個幾何體放置在墻角,使得幾何體的左面和后面靠墻,其俯視圖如圖②所示,若給該幾何體露在外面的面噴上紅漆,則需要噴漆的面積最少是多少平方厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為4的等邊三角形ABC中,E是對稱軸AD上的一個動點,連接EC,將線段EC繞點C逆時針旋轉(zhuǎn)60°得到FC,連接DF,則在點E運動過程中,DF的最小值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直角三角板和直角三角板,

1)如圖1,將頂點和頂點重合,保持三角板不動,將三角板繞點旋轉(zhuǎn),當(dāng)平分時,求的度數(shù);

2)在(1)的條件下,繼續(xù)旋轉(zhuǎn)三角板,猜想有怎樣的數(shù)量關(guān)系?并利用圖2所給的情形說明理由;

3)如圖3,將頂點和頂點重合,保持三角板不動,將三角板繞點旋轉(zhuǎn).當(dāng)落在內(nèi)部時,直接寫出之間的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊答案