【題目】已知三角形的第一條邊的長(zhǎng)是,第二條邊長(zhǎng)是第一條邊長(zhǎng)的2倍少3,第三條邊比第二條邊短5。

(1)用含、的式子表示這個(gè)三角形的周長(zhǎng);

(2)當(dāng),時(shí),求這個(gè)三角形的周長(zhǎng);

(3)當(dāng),三角形的周長(zhǎng)為 39時(shí),求各邊長(zhǎng)。

【答案】(1)5a+10b-11(2)29(3)10,17,12

【解析】

(1)根據(jù)題意表示出三角形周長(zhǎng)即可;
(2)把ab的值代入計(jì)算即可求出值;
(3)把a=4,周長(zhǎng)為39代入求出三角形各邊長(zhǎng)即可.

解:(1)根據(jù)題意得:(a+2b)+[2(a+2b)-3]+ [2(a+2b)-3-5]=5a+10b-11;
(2)把a=2,b=3代入得:周長(zhǎng)為10+30-11=29;
(3)把a=4,周長(zhǎng)為39代入得:5a+10b-11=39,即b=3,
則三角形各邊長(zhǎng)為10,17,12.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解我市中學(xué)生參加科普知識(shí)競(jìng)賽成績(jī)的情況,隨機(jī)抽查了部分參賽學(xué)生的成績(jī),整理并制作出如下的統(tǒng)計(jì)表和統(tǒng)計(jì)圖,如圖所示.請(qǐng)根據(jù)圖表信息解答下列問(wèn)題:

組別

分?jǐn)?shù)段(分)

頻數(shù)

頻率

A

60≤x<70

30

0.1

B

70≤x<80

90

n

C

80≤x<90

m

0.4

D

90≤x<100

60

0.2

(1)在表中:m=   ,n=   ;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)4個(gè)小組每組推薦1人,然后從4人中隨機(jī)抽取2人參加頒獎(jiǎng)典禮,恰好抽中A、C兩組學(xué)生的概率是多少?并列表或畫(huà)樹(shù)狀圖說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)A、D、C、F在同一條直線上,AB=DE,BC=EF,要使△ABC≌△DEF,還需要添加一個(gè)條件是( 。

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF ; D. ∠A=∠EDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是直線AB上一點(diǎn),OC為任一條射線,OD平分∠AOCOE平分∠BOC

1)分別寫(xiě)出圖中∠AOD和∠AOC的補(bǔ)角

2)求∠DOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,反比例函數(shù)yk0)的圖象與一次函數(shù)yx的圖象交于A、B兩點(diǎn)(點(diǎn)A在第一象限).

1)當(dāng)點(diǎn)A的橫坐標(biāo)為4時(shí).

k的值;

根據(jù)反比例函數(shù)的圖象,直接寫(xiě)出當(dāng)﹣4x2x≠0)時(shí),y的取值范圍;

2)點(diǎn)Cy軸正半軸上一點(diǎn),ACB90°,且ACB的面積為10,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲村至乙村間有一條公路,在C處需要爆破,已知點(diǎn)C與公路上的?空A的距離為300米,與公路上的另一?空B的距離為400米,且CACB,如圖所示,為了安全起見(jiàn),爆破點(diǎn)C周?chē)霃?/span>250米范圍內(nèi)不得進(jìn)入,問(wèn):在進(jìn)行爆破時(shí),公路AB段是否有危險(xiǎn)?是否需要暫時(shí)封鎖?請(qǐng)用你學(xué)過(guò)的知識(shí)加以解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B90°,AC12,∠A60°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長(zhǎng)的速度向A點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)DE運(yùn)動(dòng)的時(shí)間是t秒(t0).過(guò)點(diǎn)DDFBC于點(diǎn)F,連接DEEF

1AB的長(zhǎng)是   

2)在D、E的運(yùn)動(dòng)過(guò)程中,線段EFAD的關(guān)系是否發(fā)生變化?若不變化,那么線段EFAD是何關(guān)系,并給予證明;若變化,請(qǐng)說(shuō)明理由.

3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見(jiàn)解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD

OEAB,

∴∠COE=CAD,EOD=ODA,

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD,

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為鼓勵(lì)學(xué)生參加體育鍛煉,學(xué)校計(jì)劃拿出不超過(guò)3200元的資金購(gòu)買(mǎi)一批籃球和

排球,已知籃球和排球的單價(jià)比為3:2,單價(jià)和為160.

1)籃球和排球的單價(jià)分別是多少元?

2)若要求購(gòu)買(mǎi)的籃球和排球的總數(shù)量是36個(gè),且購(gòu)買(mǎi)的排球數(shù)少于11個(gè),有哪幾種購(gòu)買(mǎi)方案?

查看答案和解析>>

同步練習(xí)冊(cè)答案