(2009•黃岡)如圖,在△ABC中,∠ACB=90°,點E為AB中點,連接CE,過點E作ED⊥BC于點D,在DE的延長線上取一點F,使AF=CE.求證:四邊形ACEF是平行四邊形.

【答案】分析:要證明四邊形ACEF是平行四邊形,需求證CE∥AF,由已知易得△BEC,△AEF是等腰三角形,則∠1=∠2,∠3=∠F,又∠2=∠3,∴∠1=∠F,∴CE∥AF.
解答:證明:∵點E為AB中點,∴AE=EB
又∵∠ACB=90°,
∴CE=AE=EB,
又∵AF=CE,
∴AF=AE,
∴∠3=∠F,
又EB=EC,ED⊥BC,
∴∠1=∠2(三線合一),
又∠2=∠3,
∴∠1=∠F,
∴CE∥AF,
∴四邊形ACEF是平行四邊形.
點評:平行四邊形的判定方法共有五種,應用時要認真領會它們之間的聯(lián)系與區(qū)別,同時要根據(jù)條件合理、靈活地選擇方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2009•黃岡)如圖,在平面直角坐標系xOy中,拋物線y=x2-x-10與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC.現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動,線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設動點P,Q移動的時間為t(單位:秒).
(1)求A,B,C三點的坐標和拋物線的頂點的坐標;
(2)當t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當0<t<時,△PQF的面積是否總為定值?若是,求出此定值,若不是,請說明理由;
(4)當t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷39(眾安前進初中 付建東 孫小芳)(解析版) 題型:解答題

(2009•黃岡)如圖,在平面直角坐標系xOy中,拋物線y=x2-x-10與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC.現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動,線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設動點P,Q移動的時間為t(單位:秒).
(1)求A,B,C三點的坐標和拋物線的頂點的坐標;
(2)當t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當0<t<時,△PQF的面積是否總為定值?若是,求出此定值,若不是,請說明理由;
(4)當t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省黃岡市中考數(shù)學試卷(解析版) 題型:解答題

(2009•黃岡)如圖,在平面直角坐標系xOy中,拋物線y=x2-x-10與y軸的交點為點B,過點B作x軸的平行線BC,交拋物線于點C,連接AC.現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動,線段OC,PQ相交于點D,過點D作DE∥OA,交CA于點E,射線QE交x軸于點F.設動點P,Q移動的時間為t(單位:秒).
(1)求A,B,C三點的坐標和拋物線的頂點的坐標;
(2)當t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當0<t<時,△PQF的面積是否總為定值?若是,求出此定值,若不是,請說明理由;
(4)當t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省黃岡市中考數(shù)學試卷(解析版) 題型:解答題

(2009•黃岡)如圖,在△ABC中,∠ACB=90°,點E為AB中點,連接CE,過點E作ED⊥BC于點D,在DE的延長線上取一點F,使AF=CE.求證:四邊形ACEF是平行四邊形.

查看答案和解析>>

同步練習冊答案