【題目】如圖,在矩形ABCD中,E、F分別是CD、BC上的點(diǎn).若∠AEF=90°,則一定有( )
A.△ADE∽△ECF
B.△BCF∽△AEF
C.△ADE∽△AEF
D.△AEF∽△ABF
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)的圖像與軸交于點(diǎn),一次函數(shù)的圖像分別與軸、軸交于點(diǎn),且與的圖像交于點(diǎn).
(1)求的值;
(2)若,則的取值范圍是 ;
(3)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+3;其中正確的結(jié)論是( )
A. ①②③ B. ①③④ C. ②③④ D. ①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個(gè)單位長度后得到的△ABC;
(2) 請畫出△ABC關(guān)于原點(diǎn)對稱的△ABC;
(3) 在軸上求作一點(diǎn)P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC與△A′B′C′中,有下列條件:(1) ,(2) ;(3)∠A=∠A′;(4)∠C=∠C′,如果從中任取兩個(gè)條件組成一組,那么能判斷△ABC∽△A′B′C′的共有( )
A.1組
B.2組
C.3組
D.4組
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格上有6個(gè)三角形:①△ABC,②△CDB,③△DEB,④△FBG,⑤△HGF,⑥△EKF. 在②~⑥中,與①相似的三角形的個(gè)數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC中,D、E是AB、AC上點(diǎn),AB=7.8,AD=3,AC=6,AE=3.9,試判斷△ADE與△ABC是否會(huì)相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析式為y=2x﹣2,直線l1與x軸交于點(diǎn)D,直線l2:y=kx+b與x軸交于點(diǎn)A,且經(jīng)過點(diǎn)B,直線l1、l2交于點(diǎn)C(m,2).
(1)求m;
(2)求直線l2的解析式;
(3)根據(jù)圖象,直接寫出1<kx+b<2x﹣2的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,回答有關(guān)問題:在實(shí)數(shù)這章中,遇到過,,,,這樣的式子,我們把這樣的式子叫做二次根式,根號下的數(shù)叫做被開方數(shù).如果一個(gè)二次根式的被開方數(shù)中有的因數(shù)能開得盡方,可以利用= (a≥0,b≥0); (a≥0,b>0)將這些因數(shù)開出來,從而將二次根式化簡.當(dāng)一個(gè)二次根式的被開方數(shù)中不含開得盡方的因數(shù)或者被開方數(shù)中不含有分母時(shí),這樣的二次根式叫做最簡二次根式,例如,化成最簡二次根式是,化成最簡二次根式是3,幾個(gè)二次根式化成最簡二次根式以后,如果被開方數(shù)相同,這幾個(gè)二次根式叫做同類二次根式,如上面的例子中的和就是同類二次根式.
(1)請判斷下列各式中,哪些是同類二次根式?,,,,,.
(2)二次根式中的同類二次根式可以像整式中的同類項(xiàng)一樣合并,請計(jì)算:+--+-.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com