【題目】如圖,某市有一塊長為(3a+b)米,寬為(2a+b)米的長方形地塊,中間是邊長為(a+b)米的正方形,規(guī)劃部門計劃將在中間的正方形修建一座雕像,四周的陰影部分進(jìn)行綠化,

1)綠化的面積是多少平方米?(用含字母ab的式子表示)

2)求出當(dāng)a20,b12時的綠化面積.

【答案】1)(5a2+3ab)平方米;(22720平方米

【解析】

(1)根據(jù)割補法,用含有a,b的式子表示出整個長方形的面積,然后用含有a,b的式子表示出中間空白處正方形的面積,然后兩者相減,即可求出綠化部分的面積.

(2)將a=20,b=12分別代入(1)問中求出的關(guān)系式即可解決.

解:(1)(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣(a2+2ab+b2)=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=5a2+3ab,

答:綠化的面積是(5a2+3ab)平方米;

(2)當(dāng)a=20,b=12時

5a2+3ab=5×202+3×20×12=2000+720=2720,

答:當(dāng)a=20,b=12時的綠化面積是2720平方米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰RtABC中,ACB=90o,AC=CB,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊上運動,且始終保持AD=CE,連接DE、DF、EF

1求證:ADF≌△CEF;

2試證明DFE是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將ABC經(jīng)過一次平移后得到A′B′C′,圖中標(biāo)出了點B的對應(yīng)點B′

(1)在給定方格紙中畫出平移后的A′B′C′

(2)畫出AB邊上的中線CDBC邊上的高線AE;

(3)線段AA′與線段BB′的關(guān)系是:

(4) 求四邊形ACBB′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,△ABC的兩條外角平分線AP、CP相交于點PPH⊥ACH.若∠ABC=60°,則下面的結(jié)論:①∠ABP=30°;②∠APC=60°;③△ABC≌△APC;④PABC⑤∠APH=∠BPC,其中正確結(jié)論的個數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知BADBCE均為等腰直角三角形,∠BAD=BCE=90°,點MDE的中點.過點EAD平行的直線交射線AM于點N

(1)當(dāng)A,B,C三點在同一直線上時(如圖1),求證:MAN的中點;

(2)將圖1中BCE繞點B旋轉(zhuǎn),當(dāng)A,B,E三點在同一直線上時(如圖2),求證:CAN為等腰直角三角形;

(3)將圖1中BCE繞點B旋轉(zhuǎn)到圖3的位置時,(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,C是線段BE上一點,以BC、CE為邊分別在BE的同側(cè)作等邊ABC和等邊DCE,連結(jié)AE、BD.

(1)求證:BD=AE;

(2)如圖2,若M、N分別是線段AE、BD上的點,且AM=BN,請判斷CMN的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系中的位置如圖所示.A2,3),B3,1),C﹣2,﹣2)三點在格點上.

1作出△ABC關(guān)于y軸對稱的△A1B1C1

2)直接寫出△ABC關(guān)于x軸對稱的△A2B2C2的各點坐標(biāo);

3)求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進(jìn)行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:

信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;

信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.

根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y= (x﹣5)(x+m)(m是常數(shù),m>0)的圖象與x軸交于點A和點B(點A在點B的右側(cè))與y軸交于點C,連接AC.
(1)用含m的代數(shù)式表示點B和點C的坐標(biāo);
(2)垂直于x軸的直線l在點A與點B之間平行移動,且與拋物線和直線AC分別交于點M、N,設(shè)點M的橫坐標(biāo)為t,線段MN的長為p.
①當(dāng)t=2時,求p的值;
②若m≤1,則當(dāng)t為何值時,p取得最大值,并求出這個最大值.

查看答案和解析>>

同步練習(xí)冊答案