【題目】如圖,在等腰Rt△ABC中,∠ACB=90o,AC=CB,F(xiàn)是AB邊上的中點,點D、E分別在AC、BC邊上運動,且始終保持AD=CE,連接DE、DF、EF.
(1)求證:△ADF≌△CEF;
(2)試證明△DFE是等腰直角三角形.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
試題分析:(1)根據(jù)在等腰直角△ABC中,∠ACB=90°,AC=BC,利用F是AB中點,∠A=∠FCE=∠ACF=45°,即可證明:△ADF≌△CEF.
(2)利用△ADF≌△CEF,∠AFD+∠DFC=∠CFE+∠DFC,和∠AFC=90°即可證明△DFE是等腰直角三角形.
試題解析:(1)在等腰直角△ABC中,∠ACB=90°,AC=BC,
∴∠A=∠B=45°,
又∵F是AB中點,
∴∠ACF=∠FCB=45°,
即,∠A=∠FCE=∠ACF=45°,且AF=CF,
在△ADF與△CEF中,
,
∴△ADF≌△CEF;
(2)由(1)可知△ADF≌△CEF,
∴DF=FE,
∴△DFE是等腰三角形,
又∵∠AFD=∠CFE,
∴∠AFD+∠DFC=∠CFE+∠DFC,
∴∠AFC=∠DFE,
∵∠AFC=90°,
∴∠DFE=90°,
∴△DFE是等腰直角三角形.
科目:初中數(shù)學 來源: 題型:
【題目】工人師傅做鋁合金窗框分下面三個步驟進行:
(1)先截出兩對符合規(guī)格的鋁合金窗料(如圖①),使AB=CD,EF=GH;
(2)擺放成如圖②的四邊形,則這時窗框的形狀是______形,根據(jù)的數(shù)學原理是:_______________________;
(3)將直角尺靠緊窗框的一個角(如圖③),調(diào)整窗框的邊框,當直角尺的兩條直角邊與窗框無縫隙時(如圖④),說明窗框合格,這時窗框是_______形,根據(jù)的數(shù)學原理是:_____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人進行摸牌游戲.現(xiàn)有三張形狀大小完全相同的牌,正面分別標有數(shù)字2,3,5.將三張牌背面朝上,洗勻后放在桌子上.
(1)甲從中隨機抽取一張牌,記錄數(shù)字后放回洗勻,乙再隨機抽取一張.請用列表法或畫樹狀圖的方法,求兩人抽取相同數(shù)字的概率;
(2)若兩人抽取的數(shù)字和為2的倍數(shù),則甲獲勝;若抽取的數(shù)字和為5的倍數(shù),則乙獲勝.這個游戲公平嗎?請用概率的知識加以解釋.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,EF切⊙O于點D,過點B作BH⊥EF于點H,交⊙O于點C,連接BD.
(1)求證:BD平分∠ABH;
(2)如果AB=12,BC=8,求圓心O到BC的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)(-2xy)(3x2-2xy-4y2);
(2)(-m2n-mn+1)·(-6m3n);
(3)(-3x2y)2·(-4xy2-5y3-6x+1).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y= x2+ x+c與x軸的負半軸交于點A,與y軸交于點B,連結AB,點C(6, )在拋物線上,直線AC與y軸交于點D.
(1)求c的值及直線AC的函數(shù)表達式;
(2)點P在x軸正半軸上,點Q在y軸正半軸上,連結PQ與直線AC交于點M,連結MO并延長交AB于點N,若M為PQ的中點.
①求證:△APM∽△AON;
②設點M的橫坐標為m,求AN的長(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,AD=AC,AD⊥AC,E是AB的中點,F是AC延長線上一點.
(1)若ED⊥EF,求證:ED=EF;
(2)在(1)的條件下,若DC的延長線與FB交于點P,試判定四邊形ACPE是否為平行四邊形?并證明你的結論(請先補全圖形,再解答);
(3)若ED=EF,ED與EF垂直嗎?若垂直給出證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某市有一塊長為(3a+b)米,寬為(2a+b)米的長方形地塊,中間是邊長為(a+b)米的正方形,規(guī)劃部門計劃將在中間的正方形修建一座雕像,四周的陰影部分進行綠化,
(1)綠化的面積是多少平方米?(用含字母a、b的式子表示)
(2)求出當a=20,b=12時的綠化面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com