【題目】一組數(shù)據(jù):3,5,9,12,6的極差是_________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將拋物線y=﹣3x2+1向左平移2個(gè)單位長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度,所得到的拋物線為( )
A. y=﹣3(x﹣2)2+4B. y=﹣3(x﹣2)2﹣2
C. y=﹣3(x+2)2+4D. y=﹣3(x+2)2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于點(diǎn)E,點(diǎn)F在AC上,BD=DF.
(1)求證:CF=EB.
(2)若AB=12,AF=8,求CF的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把拋物線y=x2向右平移1個(gè)單位,所得拋物線的函數(shù)表達(dá)式為( 。
A.y=x2+1
B.y=(x+1)2
C.y=x2﹣1
D.y=(x﹣1)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)的圖象上.
(1)求反比例函數(shù)的表達(dá)式;
(2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP=S△AOB,求點(diǎn)P的坐標(biāo);
(3)若將△BOA繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)60°得到△BDE.直接寫(xiě)出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)仔細(xì)閱讀下面材料,然后解決問(wèn)題:
在分式中,對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱之為“假分式”.例如: , ;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱之為“真分式”,例如: , .我們知道,假分?jǐn)?shù)可以化為帶分?jǐn)?shù),例如: ,類似的,假分式也可以化為“帶分式”(整式與真分式和的形式),例如: .
(1)將分式化為帶分式;
(2)當(dāng)x取哪些整數(shù)值時(shí),分式的值也是整數(shù)?
(3)當(dāng)x的值變化時(shí),分式的最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計(jì)劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過(guò)1千克的,按每千克22元收費(fèi);超過(guò)1千克,超過(guò)的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.
(1)請(qǐng)分別寫(xiě)出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;
(2)小明選擇哪家快遞公司更省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)A,點(diǎn)B,與y軸交于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P作x軸的垂線l交拋物線于點(diǎn)Q.
(1)求點(diǎn)A、點(diǎn)B、點(diǎn)C的坐標(biāo);
(2)求直線BD的解析式;
(3)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),直線l交BD于點(diǎn)M,試探究m為何值時(shí),四邊形CQMD是平行四邊形;
(4)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)Q,使△BDQ是以BD為直角邊的直角三角形?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠AOB=90°,AO=BO,直線MN經(jīng)過(guò)點(diǎn)O,且AC⊥MN于C,BD⊥MN于D
(1)當(dāng)直線MN繞點(diǎn)O旋轉(zhuǎn)到圖①的位置時(shí),求證:CD=AC+BD;
(2)當(dāng)直線MN繞點(diǎn)O旋轉(zhuǎn)到圖②的位置時(shí),求證:CD=AC﹣BD;
(3)當(dāng)直線MN繞點(diǎn)O旋轉(zhuǎn)到圖③的位置時(shí),試問(wèn):CD、AC、BD有怎樣的等量關(guān)系?請(qǐng)寫(xiě)出這個(gè)等量關(guān)系,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com