【題目】如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數(shù)的圖象上.

(1)求反比例函數(shù)的表達式;

(2)在x軸的負半軸上存在一點P,使得S△AOP=S△AOB,求點P的坐標;

(3)若將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點E的坐標,并判斷點E是否在該反比例函數(shù)的圖象上,說明理由.

【答案】(1);(2)P(,0);(3)E(,﹣1),在

【解析】

試題分析:(1)將點A(,1)代入,利用待定系數(shù)法即可求出反比例函數(shù)的表達式;

(2)先由射影定理求出BC=3,那么B(,﹣3),計算求出S△AOB=××4=.則S△AOP=S△AOB=.設點P的坐標為(m,0),列出方程求解即可;

(3)先解△OAB,得出∠ABO=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)求出E點坐標為(﹣,﹣1),即可求解.

試題解析:(1)∵點A(,1)在反比例函數(shù)的圖象上,∴k=×1=,∴反比例函數(shù)的表達式為

(2)∵A(,1),AB⊥x軸于點C,∴OC=,AC=1,由射影定理得=ACBC,可得BC=3,B(,﹣3),S△AOB=××4=S△AOP=S△AOB=

設點P的坐標為(m,0),∴×|m|×1=,∴|m|=,∵P是x軸的負半軸上的點,∴m=﹣,∴點P的坐標為(,0);

(3)點E在該反比例函數(shù)的圖象上,理由如下:

∵OA⊥OB,OA=2,OB=,AB=4,∴sin∠ABO===,∴∠ABO=30°,∵將△BOA繞點B按逆時針方向旋轉(zhuǎn)60°得到△BDE,∴△BOA≌△BDE,∠OBD=60°,∴BO=BD=,OA=DE=2,∠BOA=∠BDE=90°,∠ABD=30°+60°=90°,而BD﹣OC=,BC﹣DE=1,∴E(,﹣1),∵×(﹣1)=,∴點E在該反比例函數(shù)的圖象上.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知a2+a30,則a3+3a2a+4的值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在ABC中,C=90°,AC=BC,過點C在ABC外作直線MN,AMMN于M,BNMN于N。

(1)求證:MN=AM+BN;

(2)若過點C在ABC內(nèi)作直線MN,AMMN于M,BNMN于N,則AM、BN與MN之間有什么關系?請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某運動員進行賽前訓練,如果對他30次訓練成績進行統(tǒng)計分析,判斷他的成績是否穩(wěn)定,則需要知道這10次成績的( ).

A.眾數(shù)B.方差C.平均數(shù)D.中位數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( 。

A. AB=BC時,它是菱形 B. ACBD時,它是菱形

C. 當∠ABC=90°時,它是矩形 D. AC=BD時,它是正方形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一組數(shù)據(jù):3,5,912,6的極差是_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形OABC為矩形,點A(0,8),C(6,0).動點P從點B出發(fā),以每秒1個單位長的速度沿射線BC方向勻速運動,設運動時間為t秒.

(1)當t=   s時,以OB、OP為鄰邊的平行四邊形是菱形;

(2)當點P在OB的垂直平分線上時,求t的值;

(3)將△OBP沿直線OP翻折,使點B的對應點D恰好落在x軸上,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】單項式﹣5x2y的次數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式中,一定成立的是(

A. 2=(-2) B. 2=-(-2) C. -2=|-2| D. -2=|(-2)|

查看答案和解析>>

同步練習冊答案