【題目】如圖,在4×4正方形的網(wǎng)格中,線段AB,CD如圖位置,每個小正方形的邊長都是1.
(1)求出線段AB、CD的長度;
(2)在圖中畫出線段EF,使得EF=,并判斷以AB,CD,EF三條線段組成的三角形的形狀,請說明理由;
(3)我們把(2)中三條線段按照點E與點C重合,點F與點B重合,點D與點A重合,這樣可以得△ABC,則點C到直線AB的距離為______(直接寫結(jié)果).
【答案】(1)AB= ,CD= ;(2)線段EF見解析,以AB,CD,EF三條線段組成的三角形是直角三角形,理由見解析;(3) .
【解析】
(1)根據(jù)勾股定理計算即可解決問題;
(2)利用數(shù)形結(jié)合的思想解決問題,根據(jù)勾股定理的逆定理判斷即可;
(3)利用面積法即可解決問題.
解:(1)AB= ,CD= ;
(2)EF= ,如圖所示:
∵CD2+EF2=AB2
∴以AB,CD,EF三條線段組成的三角形是直角三角形;
(3)設(shè)C到直線AB的距離為h.
則有 ,
∴h= ,
∴C到直線AB的距離為 .
故答案為(1)AB= ,CD= ;(2)線段EF見解析,以AB,CD,EF三條線段組成的三角形是直角三角形,理由見解析;(3) .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一個點從數(shù)軸上的原點開始,先向右移動3個單位長度,再向左移動5個單位長度,可以看到終點表示的數(shù)是-2,已知點A,B是數(shù)軸上的點,請參照圖并思考,完成下列各題.
(1)如果點A表示數(shù)-3,將點A向右移動7個單位長度,那么終點B表示的數(shù)是_____,A,B兩點間的距離是_____;
(2)如果點A表示數(shù)3,將A點向左移動7個單位長度,再向右移動5個單位長度,那么終點表示的數(shù)是_____,A,B兩點間的距離為_____;
(3)如果點A表示數(shù)-4,將A點向右移動168個單位長度,再向左移動256個單位長度,那么終點B表示的數(shù)是_____,A、B兩點間的距離是_____;
(4)一般地,如果A點表示的數(shù)為m,將A點向右移動n個單位長度,再向左移動p個單位長度,那么請你猜想終點B表示什么數(shù)?A,B兩點間的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O與△ABC中AB、AC的延長線及BC邊相切,且∠ACB=90°,∠A,∠B,∠C所對的邊長依次為3,4,5,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列條件中能判定四邊形ABCD是平行四邊形的是( 。
A.∠A=∠B,∠C=∠DB.AB=AD,CB=CD
C.AB=CD,AD=BCD.AB∥CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E、F分別是ABCD的邊BC,AD上的點,且BE=DF.
(1)求證:四邊形AECF是平行四邊形;
(2)若四邊形AECF是菱形,且BC=8,∠BAC=90°,求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACO=90°,∠AOC=30°,分別以AO、CO為邊向外作等邊三角形△AOD和等邊三角形△COE,DF⊥AO于F,連DE交AO于G.
(1)求證:△DFG≌△EOG;
(2)H為AD的中點,連HG,求證:CD=2HG;
(3)在(2)的條件下,AC=4,若M為AC的中點,求MG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)(-8)+10-2+(-1); (2)12-7×(-4)+8÷(-2);
(3)()÷(-); (4)-14-(1+0.5)×÷(-4)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知△ABC內(nèi)接于⊙O,點D在OC的延長線上,sin B=,∠D=30°.
(1)求證AD是⊙O的切線;
(2)若AC=6,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的一塊地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,則這塊地的面積為( )平方米.
A. 96 B. 204 C. 196 D. 304
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com