【題目】《九章算術(shù)》是中國古代數(shù)學的重要著作,方程術(shù)是它的最高成就,其中記載:今有牛五、羊二,直金十兩;牛二、羊五,直金八兩。問:牛、羊各直金幾何?譯文:“假設(shè)有 5 頭牛、2 只羊,值金 10 兩;2 頭牛、5 只羊,值金 8 兩。問:每頭牛、每只羊各值金多少兩?” 設(shè)每頭牛值金 x 兩,每只羊值金 y 兩,則列方程組錯誤的是( )

A.B.C.D.

【答案】D

【解析】

5頭牛、2只羊,值金10兩可得:5x+2y=10,由2頭牛、5只羊,值金8兩可得2x+5y=8,則7頭牛、7只羊,值金18兩,據(jù)此可知7x+7y=18,據(jù)此可得答案.

解:設(shè)每頭牛值金x兩,每只羊值金y兩,
由5頭牛、2只羊,值金10兩可得:5x+2y=10,
由2頭牛、5只羊,值金8兩可得2x+5y=8,
則7頭牛、7只羊,值金18兩,據(jù)此可知7x+7y=18,
所以方程組錯誤,
故選:D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】將圖1中的正方形剪開得到圖2,則圖2中共有4個正方形;將圖2中的一個正方形剪開得到圖3,圖3中共有7個正方形;將圖34個較小的正方中的一個剪開得到圖4,則圖4中共有10個正方形,照這個規(guī)律剪下去……

1)根據(jù)圖中的規(guī)律補全下表:

圖形標號

1

2

3

4

5

6

n

正方形個數(shù)

1

4

7

10

2)求第幾幅圖形中有2020個正方形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年423日是第23世界讀書日.某校圍繞學生日人均閱讀時間這一問題,對初二學生進行隨機抽樣調(diào)查.如圖是根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖(不完整),請你根據(jù)圖中提供的信息解答下列問題:

1)本次抽樣調(diào)查的樣本容量是

2)請將條形統(tǒng)計圖補充完整.

3)在扇形統(tǒng)計圖中,計算出日人均閱讀時間在11.5小時對應(yīng)的圓心角是 度.

4)根據(jù)本次抽樣調(diào)查,試估計我市12000名初二學生中日均閱讀時間在0.51.5小時的有多少人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線相交于點的平分線,,.

(1)圖中∠BOE的補角是

(2)若∠COF2COE,求的度數(shù);

(3) 試判斷OF是否平分∠AOC,并說明理由;請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如下圖,已知AB是⊙O的直徑,點P在BA的延長線上,PD切⊙O于點D,過點B作BE垂直于PD,交PD的延長線于點C,連接AD并延長,交BE于點E.

(1)求證:AB=BE;

(2)若PA=2,cosB=,求⊙O半徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學教務(wù)處為了了解該校學生的課外體育活動情況,對學生進行了隨機的調(diào)查,分別從足球、籃球、乒乓球、羽毛球四個方面進行了匯總,然后將結(jié)果制成了如下的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中提供的信息,解答下列問題:

1)在這次調(diào)查中,一共調(diào)查了多少名學生?

2)在扇形統(tǒng)計圖中,乒乓球項目所對的圓心角是多少度?

3)請補充完整條形統(tǒng)計圖.

4)假如你是該校的一名學生,請你根據(jù)調(diào)查的結(jié)論,談?wù)剬τ谶\動場所配置的建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分12分)已知,直線AP是過正方形ABCD頂點A的任一條直線(不過B、CD三點),點B關(guān)于直線AP的對稱點為E,連結(jié)AE、BE、DE,直線DE交直線AP于點F

1)如圖1,直線AP與邊BC相交.

∠PAB=20°,則∠ADF= °,∠BEF= °

請用等式表示線段AB、DF、EF之間的數(shù)量關(guān)系,并說明理由;

2)如圖2,直線AP在正方形ABCD的外部,且,,求線段AF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請根據(jù)圖示的對話解答下列問題.

求:(1)a,b的值;

(2)8﹣a+b﹣c的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】勾股定理是人類最偉大的科學發(fā)現(xiàn)之一,在我國古算書《周髀算經(jīng)》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內(nèi).若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

查看答案和解析>>

同步練習冊答案