【題目】張翔上午7:30出發(fā),從學校騎自行車去縣城,路程全長20km,中途因道路施工步行一段路.他步行的平均速度是5km/h

(1)若張翔騎車的平均速度是15km/h,當天上午9:00到達縣城,則他騎車與步行各用多少時間?

(2)若張翔必須在當天上午9:00之前趕到縣城,他的步行平均速度不變,則他騎車的平均速度應在什么范圍內(nèi)?

【答案】1)騎車用了1.25小時,步行用了0.25小時;(2)騎車的平均速度大于15km/h.

【解析】

1)設他騎車用了x小時,步行用了y小時,則有騎車時間+步行時間=1.5小時,騎車路程+步行路程=20千米,根據(jù)等量關(guān)系列出方程組,解方程組即可.

2)由(1)可知步行時間為0.25小時,騎車時間小于1.25小時,依題意列不等式求解即可.

解:(1)設他騎車用了x小時,步行用了y小時,

依題意得: ,

解得:

答:他騎車用了1.25小時,步行用了0.25小時;

2)設騎車的平均速度為xkm/h,

依題意得:1.25x5×0.2520

解得:x15,

答:騎車的平均速度大于15km/h

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC在直角坐標系中,

1)請寫出△ABC各點的坐標.

2)求出△ABC的面積.

3)若把△ABC向上平移2個單位,再向右平移2個單位得△ABC′,在圖中畫出△ABC變化位置。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是一個計算裝置示意圖,A、B是數(shù)據(jù)輸入口,C是計算輸出口,計算過程是由A、B分別輸入自然數(shù)mn,經(jīng)計算后得自然數(shù)KC輸出,此種計算裝置完成的計算滿足以下三個性質(zhì):

1)若A、B分別輸入1,則輸出結(jié)果為1;

2)若A輸入任何固定的自然數(shù)不變,B輸入自然數(shù)增大1,則輸出結(jié)果比原來增大2

3)若B輸入任何固定的自然數(shù)不變,A輸入自然數(shù)增大1,則輸出結(jié)果為原來的2倍。

試問:(1)若A輸入1,B輸入自然數(shù)4,輸出結(jié)果為 。

2)若B輸入1A輸入自然數(shù)5,輸出結(jié)果為 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】體育委員統(tǒng)計了全班同學60秒跳繩的次數(shù),并列出下面的頻數(shù)分布

次數(shù)

60x<80

80x<100

100x<120

頻數(shù)

1

2

25

次數(shù)

120x<140

140x<160

160x<180

頻數(shù)

15

5

2

(1)全班有多少學生?

(2)組距是多少?組數(shù)是多少

(3)跳繩次數(shù)x100x<140范圍的學生占全班學生的百分之幾?

(4)畫出適當?shù)慕y(tǒng)計圖表示上面的信息.

(5)你怎樣評價這個班的跳繩成績?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆椒ń庀铝蟹匠蹋?/span>

(1)x2-7x+6=0; (2)(5x-1)2=3(5x-1);

(3)2x2-2x+3=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】要設計一幅寬20cm,長30cm的矩形圖案,其中有兩橫兩豎的彩條,橫、豎彩條的寬度比為2∶3,如果要使所有彩條所占面積為原矩形圖案面積的三分之一,應如何設計每個彩條的寬度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】共享單車,綠色出行,現(xiàn)如今騎共享單車出行不但成為一種時尚,也稱為共享經(jīng)濟的一種新形態(tài),某校九(1班同學在街頭隨機調(diào)查了一些騎共享單車出行的市民,并將他們對各種品牌單車的選擇情況繪制成如下兩個不完整的統(tǒng)計圖(A摩拜單車;Bofo單車CHelloBike.請根據(jù)圖中提供的信息,解答下列問題

1求出本次參與調(diào)查的市民人數(shù);

2將上面的條形圖補充完整

3若某區(qū)有10000名市民騎共享單車出行根據(jù)調(diào)查數(shù)據(jù)估計該區(qū)有多少名市民選擇騎摩托單車出行?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,∠A=∠ADE,∠C=∠E

1)求證:BECD

2)若∠EDC3C,求∠C的度數(shù).

查看答案和解析>>

同步練習冊答案