(2002•哈爾濱)如圖,圓內(nèi)接正六邊形ABCDEF中,AC、BF交于點M.則S△ABM:S△AFM=   
【答案】分析:先根據(jù)正六邊形的性質(zhì)判斷出△AMF≌△BMC,再求出△ABM與△AMF的高之比即可.
解答:解:過M作MG⊥AB于G;
∵六邊形ABCDEF是正六邊形,
∴∠FAB=∠ABC=120°,AF=AB=BC,F(xiàn)E∥BC,F(xiàn)E=BC,
∴△ABF≌△ABC,∠AFM=∠ACB,
∴△AMF≌△BCM;
連接BE,
∵六邊形ABCDEF是正六邊形,
∴BE是⊙O的直徑,∠MFE=∠MBC=90°,
∴∠FAM=90°,
∴S△ABM:S△AFM=GM:AM;
∵∠FAB=∠ABC=120°,∠FAM=90°,
∴∠MAB=∠BCM=30°,
=sin30°=,即S△ABM:S△AFM=
點評:本題考查的是正六邊形及等腰三角形的性質(zhì)、圓周角定理,綜合性較強,但難度適中.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•哈爾濱)如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設(shè)OQ的長為t,四邊形PQAC的面積為S.求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)在線段BM上是否存在點N,使△NMC為等腰三角形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《反比例函數(shù)》(01)(解析版) 題型:選擇題

(2002•哈爾濱)已知y與x成反比例,當x=3時,y=4,那么當y=3時,x的值等于( )
A.4
B.-4
C.3
D.-3

查看答案和解析>>

科目:初中數(shù)學 來源:2010年中考數(shù)學模擬卷(1)(解析版) 題型:解答題

(2002•哈爾濱)如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設(shè)OQ的長為t,四邊形PQAC的面積為S.求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)在線段BM上是否存在點N,使△NMC為等腰三角形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:解答題

(2002•哈爾濱)如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(點A在點B左側(cè)),與y軸交于點C,且當x=0和x=2時,y的值相等.直線y=3x-7與這條拋物線相交于兩點,其中一點的橫坐標是4,另一點是這條拋物線的頂點M.
(1)求這條拋物線的解析式;
(2)P為線段BM上一點,過點P向x軸引垂線,垂足為Q.若點P在線段BM上運動(點P不與點B、M重合),設(shè)OQ的長為t,四邊形PQAC的面積為S.求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)在線段BM上是否存在點N,使△NMC為等腰三角形?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年黑龍江省哈爾濱市中考數(shù)學試卷(解析版) 題型:選擇題

(2002•哈爾濱)已知y與x成反比例,當x=3時,y=4,那么當y=3時,x的值等于( )
A.4
B.-4
C.3
D.-3

查看答案和解析>>

同步練習冊答案