解:(1)連接O′B
∵O′(-2,-3),MN過點O′且與x軸垂直
∴O′D=3,OD=2,AD=BD=
AB
∵⊙O′的半徑為5
∴BD=AD=4
∴OA=6,OB=2
∴點A、B的坐標分別為(-6,0)、(2,0)
∵BC切⊙O′于B
∴O′B⊥BC
∴∠OBC+∠O′BD=90°
∵∠O′BD+∠BO′D=90°
∴∠OBC=∠BO′D
∵∠BOC=∠BDO′=90°
∴△BOC∽△O′DB
∴
∴OC=
=
∴點C的坐標為(0,
)
設直線BC的解析式為y=kx+b
∴
解得
∴直線BC的解析式為y=-
x+
;
(2)由圓和拋物線的對稱性可知MN是拋物線的對稱軸,
∴拋物線頂點的橫坐標為-2
∵拋物線的頂點在直線y=-
x+
上
∴y=
即拋物線的頂點坐標為(-2,
)
設拋物線的解析式為y=a(x+6)(x-2)
得
=a(-2+6)(-2-2)
解得
∴拋物線的解析式為y=-
(x+6)(x-2)=-
x
2-
x+4;
(3)由(2)得拋物線與y軸的交點P的坐標為(0,4),
若四邊形DBPQ是平行四邊形,
則有BD∥PQ,BD=PQ,
∴點Q的縱坐標為4
∵BD=4
∴PQ=4
∴點Q的橫坐標為-4
∴點Q的坐標為(-4,4)
∴當x=-4時,y=-
x
2-
x+4=-
×16+
+4=4
∴點Q在拋物線上
∴在拋物線上存在一點Q(-4,4),使四邊形DBPQ為平行四邊形.
分析:(1)求直線BC的解析式,首先要求出的是B、C的坐標,即OB、OC的長;連接O′B,在直角三角形O′DB中可根據(jù)O′D及半徑的長用勾股定理求出DB的長,然后根據(jù)OD的長即O′橫坐標的絕對值求出OB的長,即可求出B的坐標.求OC長,可根據(jù)△BOC∽△O′DB得出的比例線段來求出.求出B、C的坐標后,可用待定系數(shù)法求出直線BC的解析式.
(2)由于拋物線過A、B兩點,根據(jù)拋物線的對稱性進可得出拋物線的對稱軸為x=-2,又已知拋物線的頂點在直線BC上,由此可求出拋物線頂點的坐標.然后用頂點式的二次函數(shù)通式來設拋物線的解析式,然后將B點坐標代入即可求出拋物線的解析式.
(3)可根據(jù)(2)得出的拋物線的解析式,求出P點的坐標.由于四邊形DBPQ為平行四邊形,那么DP平行且相等于DB,因此可將P點坐標左移DB長即4個單位,即可得出Q點,然后將Q點坐標代入拋物線的解析式中即可判斷出Q點是否在拋物線上.
點評:本題考查了待定系數(shù)法求二次函數(shù)解析式、三角形相似、平行四邊形的判定等知識點,綜合性強,考查學生數(shù)形結(jié)合的數(shù)學思想方法.