某地區(qū)一種商品的需求量y1(萬件)、供應(yīng)量y2(萬件)與價格x(元/件)分別近似滿足下列函數(shù)關(guān)系式:y1=-x+60,y2=2x-36.需求量為0時,即停止供應(yīng).當(dāng)y1=y2時,該商品的價格稱為穩(wěn)定價格,需求量稱為穩(wěn)定需求量.
(1)求該商品的穩(wěn)定價格與穩(wěn)定需求量;
(2)價格在什么范圍,該商品的需求量低于供應(yīng)量;
(3)當(dāng)需求量高于供應(yīng)量時,政府常通過對供應(yīng)方提供價格補貼來提高供貨價格,以提高供應(yīng)量.現(xiàn)若要使穩(wěn)定需求量增加4萬件,政府應(yīng)對每件商品提供多少元補貼,才能使供應(yīng)量等于需求量?
(1)當(dāng)y1=y2時,有-x+60=2x-36.
∴x=32,
此時-x+60=28,
所以該商品的穩(wěn)定價格為32元/件,穩(wěn)定需求量為28萬件;

(2)因為“需求量為0時,即停止供應(yīng)”,
∴當(dāng)y1=0時,有x=60,
又-x+60<2x-36
解得:x>32,
∴當(dāng)價格大于32元/件而小于60元/件時,該商品的需求量低于供應(yīng)量;

(3)設(shè)政府部門對該商品每件應(yīng)提供a元補貼.
根據(jù)題意,得方程組
28+4=-x+60
28+4=2(x+a)-36

解這個方程組,得
x=28
a=6

所以,政府部門對該商品每件應(yīng)提供6元的補貼.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖是一測力器,在不受力的自然狀態(tài)下,測力器彈簧MN為40cm(如圖(1));當(dāng)被測試者將手掌放在點P處,然后盡力向前推,測力器彈簧MN的長度會隨著受力大小的不同而發(fā)生變化,此時測力器的刻度表的指針?biāo)傅臄?shù)字就是測試者的作用力;圖(2)是測力器在最大受力極限狀態(tài)時,測力器彈簧MN的最小長度為8cm;圖(3)、圖(4)是兩次測試時,測力器所展現(xiàn)的數(shù)據(jù)狀態(tài);已知測力器彈簧MN的長度y(cm)與受力x(N)之間存在一次函數(shù)關(guān)系.
(1)求y與x之間的函數(shù)解析式;
(2)當(dāng)指針指向300時,MN的長是多少?
(3)求該測力器在設(shè)計時所能承受的最大作用力是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一次函數(shù)y=kx+b的圖象可以看作是由直線y=2x向上平移6個單位長度得到的,且y=kx+b與兩坐標(biāo)軸圍成的三角形面積被一正比例函數(shù)分成面積的比為1:2的兩部分,求這個正比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某中學(xué)九年級甲、乙兩班同學(xué)商定舉行一次遠(yuǎn)足活動,A、B兩地相離10千米,甲班從A地出發(fā)勻速步行到B地,乙班從B地出發(fā)勻速步行到A地,兩班同學(xué)各自到達目的地后都就地活動.兩班同時出發(fā),相向而行.設(shè)步行時間為x小時,甲、乙兩班離A地的距離分別為y1千米、y2千米,y1、y2與x的函數(shù)關(guān)系圖象如圖所示,根據(jù)圖象解答下列問題:
(1)分別求出y1、y2與x的函數(shù)關(guān)系式;
(2)求甲、乙兩班學(xué)生出發(fā)后,幾小時相遇?
(3)求甲班同學(xué)去遠(yuǎn)足的過程中,步行多少時間后兩班同學(xué)之距為9千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:⊙C的圓心C在x軸上,AB是⊙C的直徑,⊙C與y軸交于D、E兩點,且∠ACD=∠FDO.
(1)求證:直線FD是⊙C的切線;
(2)若OC:OA=1:2,DE=4
2
,求直線FD的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,直線y=-
3
3
x+
3
與兩坐標(biāo)軸交于A、B,以點M(1,0)為圓心,MO為半徑作小⊙M,又以點M為圓心、MA為半徑作大⊙M交坐標(biāo)軸于C、D.
(1)求證:直線AB是小⊙M的切線.
(2)連接BM,若小⊙M以2單位/秒的速度沿x軸向右平移,大⊙M以1單位/秒的速度沿射線BM方向平移,問:經(jīng)過多少秒后,兩圓相切?
(3)如圖2,作直線BEx軸交大⊙M于E,過點B作直線PQ,連接PE、PM,使∠EPB=120°,請你探究線段PB、PE、PM三者之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知直線l的解析式為y=
4
3
x+4
,它與x軸、y軸分別相交于A、B兩點.點C從點O出發(fā)沿OA以每秒1個單位的速度向點A勻速運動;點D從點A出發(fā)沿AB以每秒1個單位長的速度向點B勻速運動,點C、D同時出發(fā),當(dāng)點C到達點A時同時停止運動.伴隨著C、D的運動,EF始終保持垂直平分CD,垂足為E,且EF交折線AB-BO-AO于點F.
(1)直接寫出A、B兩點的坐標(biāo);
(2)設(shè)點C、D的運動時間是t秒(t>0).
①用含t的代數(shù)式分別表示線段AD和AC的長度;
②在點F運動的過程中,四邊形BDEF能否成為直角梯形?若能,求t的值;若不能,請說明理由.(可利用備用圖解題)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

義烏市某飾品廠生產(chǎn)出一款新產(chǎn)品,上市20天全部銷售完,該廠銷售部對銷售情況進行跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:件)與上市時間x(單位:天)的函數(shù)關(guān)系如圖1所示,飾品價格z(單位:元/件)與上市時間x(單位:天)的函數(shù)關(guān)系如圖2所示.

(1)觀察圖象,直接寫出日銷售量的最大值;
(2)求該廠飾品的價格z與上市時間x的函數(shù)解析式;
(3)試比較第8天與第12天的銷售金額哪天多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,巳知A點坐標(biāo)為(5,0),直線y=x+b(b>0)與y軸交于點B,連接AB,∠α=75°,則b的值為( 。
A.3B.
5
3
3
C.4D.
5
3
4

查看答案和解析>>

同步練習(xí)冊答案