將直尺和直角三角板按如圖方式擺放,已知∠1=30°,則∠2的大小是( 。
| A. | 30° | B. | 45° | C. | 60° | D. | 65° |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
觀光塔是濰坊市區(qū)的標(biāo)志性建筑,為測(cè)量其高度,如圖,一人先在附近一樓房的底端A點(diǎn)處觀測(cè)觀光塔頂端C處的仰角是60°,然后爬到該樓房頂端B點(diǎn)處觀測(cè)觀光塔底部D處的俯角是30°.已知樓房高AB約是45m,根據(jù)以上觀測(cè)數(shù)據(jù)可求觀光塔的高CD是 m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
有一組數(shù)據(jù)如下:3,a,4,6,7,它們的平均數(shù)是5,那么這組數(shù)據(jù)的方差是( 。
| A. | 10 | B. |
| C. |
| D. | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某家電銷(xiāo)售商城電冰箱的銷(xiāo)售價(jià)為每臺(tái)2100元,空調(diào)的銷(xiāo)售價(jià)為每臺(tái)1750元,每臺(tái)電冰箱的進(jìn)價(jià)比每臺(tái)空調(diào)的進(jìn)價(jià)多400元,商城用80000元購(gòu)進(jìn)電冰箱的數(shù)量與用64000元購(gòu)進(jìn)空調(diào)的數(shù)量相等.
(1)求每臺(tái)電冰箱與空調(diào)的進(jìn)價(jià)分別是多少?
(2)現(xiàn)在商城準(zhǔn)備一次購(gòu)進(jìn)這兩種家電共100臺(tái),設(shè)購(gòu)進(jìn)電冰箱x臺(tái),這100臺(tái)家電的銷(xiāo)售總利潤(rùn)為y元,要求購(gòu)進(jìn)空調(diào)數(shù)量不超過(guò)電冰箱數(shù)量的2倍,總利潤(rùn)不低于13000元,請(qǐng)分析合理的方案共有多少種?并確定獲利最大的方案以及最大利潤(rùn);
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)電冰箱出廠價(jià)下調(diào)k(0<k<100)元,若商店保持這兩種家電的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)問(wèn)中條件,設(shè)計(jì)出使這100臺(tái)家電銷(xiāo)售總利潤(rùn)最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,拋物線(xiàn)與x軸交于點(diǎn)A(﹣,0)、點(diǎn)B(2,0),與y軸交于點(diǎn)C(0,1),連接BC.
(1)求拋物線(xiàn)的函數(shù)關(guān)系式;
(2)點(diǎn)N為拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)N作NP⊥x軸于點(diǎn)P,設(shè)點(diǎn)N的橫坐標(biāo)為t(﹣<t<2),求△ABN的面積S與t的函數(shù)關(guān)系式;
(3)若﹣<t<2且t≠0時(shí)△OPN∽△COB,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在矩形ABCD中,已知AB=4,BC=3,矩形在直線(xiàn)l上繞其右下角的頂點(diǎn)B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點(diǎn)繼續(xù)向右旋轉(zhuǎn)90°至圖②位置,…,以此類(lèi)推,這樣連續(xù)旋轉(zhuǎn)2015次后,頂點(diǎn)A在整個(gè)旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路程之和是( 。
| A. | 2015π | B. | 3019.5π | C. | 3018π | D. | 3024π |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,某登山運(yùn)動(dòng)員從營(yíng)地A沿坡角為30°的斜坡AB到達(dá)山頂B,如果AB=2000米,則他實(shí)際上升了 米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖是二次函數(shù)y=ax2+bx+c的圖象,下列結(jié)論:
①二次三項(xiàng)式ax2+bx+c的最大值為4;
②4a+2b+c<0;
③一元二次方程ax2+bx+c=1的兩根之和為﹣1;
④使y≤3成立的x的取值范圍是x≥0.
其中正確的個(gè)數(shù)有( )
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
下列關(guān)于的方程:①;②;③;
④;⑤.其中一元二次方程有( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com