如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=kx+1(k≠0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,過點(diǎn)C的拋物線y=ax2-(6a-2)x+b (a≠0)與直線AC交于另一點(diǎn)B,點(diǎn)B坐標(biāo)為(4,3).
(1) 求a的值;
(2) 點(diǎn)p是射線CB上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P在作PQ⊥x軸,垂足為點(diǎn)Q,在x軸上點(diǎn)Q的右側(cè)取點(diǎn)M,使MQ=,在QP的延長(zhǎng)線上取點(diǎn)N,連接PM,AN,已知tan∠NAQ-tan∠MPQ=,求線段PN的長(zhǎng);
(3) 在(2)的條件下,過點(diǎn)C作CD⊥AB,使點(diǎn)D在直線AB 下方,且CD=AC,連接PD,NC,當(dāng)以PN,PD,NC的長(zhǎng)為三邊長(zhǎng)構(gòu)成的三角形面積是時(shí),在y軸左側(cè)的拋物線上是否存在點(diǎn)E,連接NE,PE,使得ΔENP與以PN、PD、NC的長(zhǎng)為三邊長(zhǎng)的三角形全等?若存在,求出點(diǎn)E坐標(biāo);若不存在,請(qǐng)說明理由.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
小明在課外學(xué)習(xí)時(shí)遇到這樣一個(gè)問題:
定義:如果二次函數(shù)y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常數(shù))與y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常數(shù))滿足a1+a2=0,b1=b2,c1+c2=0,則稱這兩個(gè)函數(shù)互為“旋轉(zhuǎn)函數(shù)”.
求函數(shù)y=﹣x2+3x﹣2的“旋轉(zhuǎn)函數(shù)”.
小明是這樣思考的:由函數(shù)y=﹣x2+3x﹣2可知,a1=﹣1,b1=3,c1=﹣2,根據(jù)a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2,就能確定這個(gè)函數(shù)的“旋轉(zhuǎn)函數(shù)”.
請(qǐng)參考小明的方法解決下面問題:
(1)寫出函數(shù)y=﹣x2+3x﹣2的“旋轉(zhuǎn)函數(shù)”;
(2)若函數(shù)y=﹣x2+mx﹣2與y=x2﹣2nx+n互為“旋轉(zhuǎn)函數(shù)”,求(m+n)2015的值;
(3)已知函數(shù)y=﹣(x+1)(x﹣4)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A、B、C關(guān)于原點(diǎn)的對(duì)稱點(diǎn)分布是A1,B1,C1,試證明經(jīng)過點(diǎn)A1,B1,C1的二次函數(shù)與函數(shù)y=﹣(x+1)(x﹣4)互為“旋轉(zhuǎn)函數(shù).”
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
圖1,圖2是兩兩張形狀、大小完全相同的方格紙,方格紙中的每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn).
(1) 在圖1中畫出等腰直角三角形MON,使點(diǎn)N在格點(diǎn)上,且∠MON=900;
(2) 在圖2中以格點(diǎn)為頂點(diǎn)畫出一個(gè)正方形ABCD,使正方形ABCD面積等于(1)中等腰直角三角形MON面積的4倍,并將正方形ABCD分割成以格點(diǎn)為頂點(diǎn)的四個(gè)全等的直角三角和一個(gè)正方形,且正方形ABCD面積沒有剩余(畫出一種即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,△中,AB=AC,D是BC的中點(diǎn),AC的垂直平分線分別交 AC、AD、AB于點(diǎn)E、O、F,則圖中全等的三角形的對(duì)數(shù)是
A.1對(duì) B.2對(duì) C.3對(duì) D.4對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com