【題目】如圖,矩形中,對(duì)角線交于點(diǎn)上任意點(diǎn),中點(diǎn),則的最小值為(

A.B.C.D.

【答案】A

【解析】

設(shè)M、N分別為AB、AD的中點(diǎn),則MNABD的中位線,點(diǎn)FMN上,作點(diǎn)O關(guān)于MN的對(duì)稱點(diǎn)O′,連接BO′,則BO′即為的最小值,易證△ABO是等邊三角形,過(guò)點(diǎn)AAHBOH,求出AHOO′,然后利用勾股定理求出BO′即可.

解:如圖,設(shè)M、N分別為AB、AD的中點(diǎn),則MNABD的中位線,

EBD上任意點(diǎn),FAE中點(diǎn),

∴點(diǎn)FMN上,

作點(diǎn)O關(guān)于MN的對(duì)稱點(diǎn)O′,連接BO′,則BO′即為的最小值,

∵四邊形ABCD是矩形,

OAOB,∠AOB60°

∴△ABO是等邊三角形,

ABBO4

過(guò)點(diǎn)AAHBOH,則BHHO2,

AH,

MNBD,點(diǎn)H關(guān)于MN的對(duì)稱點(diǎn)為A,點(diǎn)O關(guān)于MN的對(duì)稱點(diǎn)為O′

OO′AH,且OO′BD,

,

的最小值為

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:在RtABC中,∠ACB=90°,AC=BC,D是線段AB上一點(diǎn),連結(jié)CD,將線段CD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得到線段CE,連結(jié)DE,BE

1)依題意補(bǔ)全圖形;

2)若∠ACD,用含α的代數(shù)式表示∠DEB

3)若△ACD的外心在三角形的內(nèi)部,請(qǐng)直接寫出α的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,正方形中, 點(diǎn)的中點(diǎn),過(guò)點(diǎn)于點(diǎn),過(guò)點(diǎn)垂直的延長(zhǎng)線于點(diǎn),交于點(diǎn)

1)求證:

2)如圖2,連接,連接并延長(zhǎng)交于點(diǎn)I,

①求證:

②求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)與函數(shù)定義新函數(shù)

1)若則新函數(shù)

2)若新函數(shù)的解析式為 ;

3)設(shè)新函數(shù)頂點(diǎn)為

①當(dāng)為何值時(shí),有最大值,并求出最大值;

②求的函數(shù)解析式;

4)請(qǐng)你探究:函數(shù)與新函數(shù)分別經(jīng)過(guò)定點(diǎn),函數(shù)的頂點(diǎn)為,新函數(shù)上存在一點(diǎn),使得以點(diǎn)為頂點(diǎn)的四邊形為平行四邊形時(shí),直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,4),請(qǐng)解答下列問(wèn)題:

(1)畫出ABC關(guān)于x軸對(duì)稱的A1B1C1,并寫出點(diǎn)A1的坐標(biāo).

(2)畫出A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°后得到的A2B2C2,并寫出點(diǎn)A2的坐標(biāo).

【答案】(1)作圖見(jiàn)解析;點(diǎn)A1的坐標(biāo)(2,﹣4);(2)作圖見(jiàn)解析;點(diǎn)A2的坐標(biāo)(﹣2,4).

【解析】

試題分析:(1)分別找出A、B、C三點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn),再順次連接,然后根據(jù)圖形寫出A點(diǎn)坐標(biāo);

(2)將A1B1C1中的各點(diǎn)A1、B1、C1繞原點(diǎn)O旋轉(zhuǎn)180°后,得到相應(yīng)的對(duì)應(yīng)點(diǎn)A2、B2、C2,連接各對(duì)應(yīng)點(diǎn)即得A2B2C2

試題解析:(1)如圖所示:點(diǎn)A1的坐標(biāo)(2,﹣4);

(2)如圖所示,點(diǎn)A2的坐標(biāo)(﹣2,4).

考點(diǎn):1.作圖-旋轉(zhuǎn)變換;2.作圖-軸對(duì)稱變換.

型】解答
結(jié)束】
18

【題目】觀察下面的點(diǎn)陣圖和相應(yīng)的等式,探究其中的規(guī)律:

(1)認(rèn)真觀察,并在④后面的橫線上寫出相應(yīng)的等式.

1=1 1+2==3 1+2+3==6    

(2)結(jié)合(1)觀察下列點(diǎn)陣圖,并在⑤后面的橫線上寫出相應(yīng)的等式.

1=121+3=223+6=326+10=42   

(3)通過(guò)猜想,寫出(2)中與第n個(gè)點(diǎn)陣相對(duì)應(yīng)的等式   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△OBC的邊BCx軸,過(guò)點(diǎn)C的雙曲線y=(k0)與△OBC的邊OB交于點(diǎn)D,且ODDB=12,若△OBC的面積等于8,則k的值為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)y=﹣x+5的圖象與函數(shù)yk0)的圖象相交于點(diǎn)A,并與x軸交于點(diǎn)C,SAOC15.點(diǎn)D是線段AC上一點(diǎn),CDAC23

1)求k的值;

2)根據(jù)圖象,直接寫出當(dāng)x0時(shí)不等式>﹣x+5的解集;

3)求△AOD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每到春夏交替時(shí)節(jié),楊樹的楊絮漫天飛舞,易引發(fā)皮膚病、呼吸道疾病等,給人們生活造成困擾,為了解市民對(duì)治理?xiàng)钚醴椒ǖ馁澩闆r,某課題小組隨機(jī)調(diào)查了部分市民(調(diào)查問(wèn)卷如下),并根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖:

調(diào)查問(wèn)卷

治理?xiàng)钚酰耗x哪一項(xiàng)? (每人只選一項(xiàng))

A.減少楊樹新增面積,控制楊樹每年的栽種量;

B.調(diào)整樹種結(jié)構(gòu),逐漸更換現(xiàn)有楊樹;

C.選育無(wú)絮楊品種,并推廣種植;

D.對(duì)楊樹注射生物干擾素,避免產(chǎn)生飛絮;

E.其他.

根據(jù)以上信息,解答下列問(wèn)題:

1)在扇形統(tǒng)計(jì)圖中,求扇形的圓心角度數(shù);

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該市約有萬(wàn)人,請(qǐng)估計(jì)贊同“選育無(wú)絮楊品種,并推廣種植”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,DAB的中點(diǎn),以CD為直徑的⊙O分別交AC,BC于點(diǎn)E,F兩點(diǎn),過(guò)點(diǎn)FFGAB于點(diǎn)G

1)試判斷FG與⊙O的位置關(guān)系,并說(shuō)明理由.

2)若AC3CD2.5,求FG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案