【題目】已知如圖,四邊形ABCD中,∠B=90°,AB=4,BC=3,CD=12,AD=13,求這個(gè)四邊形的面積.

【答案】解:連接AC,如圖所示:
∵∠B=90°,∴△ABC為直角三角形,
又AB=4,BC=3,
∴根據(jù)勾股定理得:AC= =5,
又AD=13,CD=12,
∴AD2=132=169,CD2+AC2=122+52=144+25=169,
∴CD2+AC2=AD2 ,
∴△ACD為直角三角形,∠ACD=90°,
則S四邊形ABCD=SABC+SACD= ABBC+ ACCD= ×3×4+ ×12×5=36.
【解析】連接AC,在直角三角形ABC中,由AB及BC的長(zhǎng),利用勾股定理求出AC的長(zhǎng),再由AD及CD的長(zhǎng),利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的是( ).

A. 等腰三角形一定是銳角三角形

B. 等腰三角形的腰長(zhǎng)總大于底邊長(zhǎng)

C. 等腰三角形的底角的外角一定是鈍角

D. 頂角相等的兩個(gè)等腰三角形是全等三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì)2014年我國(guó)高新技術(shù)產(chǎn)品出口總額40570億元,將數(shù)據(jù)40570億用科學(xué)記數(shù)法表示為(
A.4.0570×109
B.0.40570×1010
C.40.570×1011
D.4.0570×1012

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】春節(jié)期間小紅和小明進(jìn)行摸球游戲,在一個(gè)不透明的袋子里裝有四個(gè)球,有3個(gè)球上分別寫了新、年、好三個(gè)不同的字,另一個(gè)球上沒有寫字,游戲規(guī)定摸球的人可以任意從口袋中摸出一個(gè)球(不再放回),連續(xù)摸三回,如摸到新年好三個(gè)字則得1分,否則對(duì)方得1分.

(1)若由小紅摸球,列出樹狀圖或表格求小紅獲勝的概率;

(2)你認(rèn)為這個(gè)游戲公平嗎?如何修改游戲規(guī)則才能使該游戲?qū)﹄p方公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知α、β滿足α+β=5,且αβ=6,則以α、β為兩根的一元二次方程是(
A.x2+5x+6=0
B.x2﹣5x+6=0
C.x2﹣5x﹣6=0
D.x2+5x﹣6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把多項(xiàng)式xy+x2y4﹣x3y2﹣5按x升冪進(jìn)行排列

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種傳染病,若有一人感染,經(jīng)過兩輪傳染后將共有49人感染.設(shè)這種傳染病每輪傳染中平均一個(gè)人傳染了x個(gè)人,列出方程為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】東南中學(xué)租用兩輛小轎車(設(shè)速度相同)同時(shí)送二名帶隊(duì)老師及名七年級(jí)的學(xué)生到育才中學(xué)參加數(shù)學(xué)競(jìng)賽,每輛車限坐人(不包括司機(jī)).其中一輛小轎車在距離育才中學(xué)的地方出現(xiàn)故障,此時(shí)距離競(jìng)賽開始還有分鐘,唯一可利用的交通工具是另一輛小轎車,且這輛車的平均速度是,人步行的速度是(上、下車時(shí)間忽略不計(jì)).

)小李提議:可以讓另一輛小轎車先送名學(xué)生走,再返回來接我們.你認(rèn)為小李的提議合理嗎?通過計(jì)算說明理由.

)小羅提議:可以讓另一輛小車先送名學(xué)生走,而其它名師生同時(shí)步行前往,小轎車到達(dá)考場(chǎng)后再返回途中接送其他人.你認(rèn)為小羅的提議合理嗎?通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將多項(xiàng)式﹣2+4x2y+6x﹣x3y2按x的降冪排列:

查看答案和解析>>

同步練習(xí)冊(cè)答案