【題目】感知:如圖1,AD平分∠BAC.∠B+∠C=180°,∠B=90°,易知:DB=DC.
探究:如圖2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,求證:DB=DC.
應用:如圖3,四邊形ABCD中,∠B=45°,∠C=135°,DB=DC=a,則AB﹣AC= (用含a的代數(shù)式表示)
【答案】探究:證明見解析;應用:a.
【解析】
試題分析:探究:欲證明DB=DC,只要證明△DFC≌△DEB即可.
應用:先證明△DFC≌△DEB,再證明△ADF≌△ADE,結合BD=EB即可解決問題.
試題解析:探究:
證明:如圖②中,DE⊥AB于E,DF⊥AC于F,∵DA平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,∵∠F=∠DEB,∠FCD=∠B,DF=DB,∴△DFC≌△DEB,∴DC=DB.
應用:解;如圖③連接AD、DE⊥AB于E,DF⊥AC于F,∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,∴∠B=∠FCD,在△DFC和△DEB中,∵∠F=∠DEB,∠FCD=∠B,DC=DB,∴△DFC≌△DEB,∴DF=DE,CF=BE,在RT△ADF和RT△ADE中,∵AD=AD,DE=DF,∴△ADF≌△ADE,∴AF=AE,∴AB﹣AC=(AE+BE)﹣(AF﹣CF)=2BE,在RT△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,∴BE=a,∴AB﹣AC=a.故答案為:a.
科目:初中數(shù)學 來源: 題型:
【題目】我國是一個嚴重缺水的國家,我們都應該倍加珍惜水資源,節(jié)約用水.據(jù)測試,擰不緊的水龍頭每秒會滴下2滴水,每滴水約0.5毫升.小燕子同學在洗手時,沒有擰緊水龍頭,當小燕子離開x(時)后水龍頭滴了y(毫升)水.在這段文字中涉及的量中,哪些是常量,哪些是變量?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于點E,DF⊥AC于點F.
(1)求證:AB=AC;
(2)若AD=,∠DAC=30°,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別是AB,CD的中點,G,H分別是AF,CE的中點,連結EG,F(xiàn)H.
(1)四邊形EHFG是不是平行四邊形?如果是,請給出證明;如果不是,請說明理由;
(2)求四邊形EHFG的面積與平行四邊形ABCD的面積之比.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點E,交BC的延長線于點F.
(1)求證:BF=CD;
(2)連接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四邊形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,C是BE上一點,D是AC的中點,且AB=AC,DE=DB,∠A=60°,△ABC的周長是18cm.求∠E的度數(shù)及CE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,對角線AC為⊙O的直徑,過點C作AC的垂線交AD的延長線于點E,點F為CE的中點,連接DB, DF.
(1)求證:DF是⊙O的切線;
(2)若DB平分∠ADC,AB=a, ∶DE=4∶1,寫出求DE長的思路.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com