【題目】學(xué)習(xí)利用三角函數(shù)測(cè)高后,某綜合實(shí)踐活動(dòng)小組實(shí)地測(cè)量了鳳凰山與中心廣場(chǎng)的相對(duì)高度AB,其測(cè)量步驟如下:

1)在中心廣場(chǎng)測(cè)點(diǎn)C處安置測(cè)傾器,測(cè)得此時(shí)山頂A的仰角∠AFH=30°;

2)在測(cè)點(diǎn)C與山腳B之間的D處安置測(cè)傾器(CDB在同一直線上,且C、D之間的距離可以直接測(cè)得),測(cè)得此時(shí)山頂上紅軍亭頂部E的仰角∠EGH=45°;

3)測(cè)得測(cè)傾器的高度CF=DG=1.5米,并測(cè)得CD之間的距離為288米;

已知紅軍亭高度為12米,請(qǐng)根據(jù)測(cè)量數(shù)據(jù)求出鳳凰山與中心廣場(chǎng)的相對(duì)高度AB.(1.732,結(jié)果保留整數(shù))

【答案】411米.

【解析】試題分析:首先分析圖形,根據(jù)題意構(gòu)造直角三角形.本題涉及多個(gè)直角三角形,應(yīng)利用其公共邊構(gòu)造邊角關(guān)系,進(jìn)而可求出答案.

試題解析:設(shè)AH=x米,在RtEHG中,∵∠EGH=45°,GH=EH=AE+AH=x+12,GF=CD=288米,HF=GH+GF=x+12+288=x+300,在RtAHF中,∵∠AFH=30°,AH=HFtanAFH,即x=x+300,解得x=150+1).AB=AH+BH≈409.8+1.5≈411(米),鳳凰山與中心廣場(chǎng)的相對(duì)高度AB大約是411米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(教材回顧)

七上教材有這樣一段文字:人們通過(guò)長(zhǎng)期觀察發(fā)現(xiàn)如果早晨天空中棉絮的高積云,那么午后常有雷雨降臨,于是有了“朝有破絮云,午后雷雨臨”的諺語(yǔ).在數(shù)學(xué)的學(xué)習(xí)過(guò)程中,我們經(jīng)常用這樣的方法探究規(guī)律.

(數(shù)學(xué)問(wèn)題)

四邊形有4個(gè)頂點(diǎn),如果在它的內(nèi)部再畫(huà)n個(gè)點(diǎn),并以這(n+4)個(gè)點(diǎn)為頂點(diǎn)畫(huà)三角形,那么最多可以剪得多少個(gè)這樣的三角形?

(問(wèn)題探究)

為了解決這個(gè)問(wèn)題,我們可以從n=1,n=2n=3等具體的、簡(jiǎn)單的情形入手,探索最多可以剪得的三角形個(gè)數(shù)的變化規(guī)律.

(問(wèn)題解決)

1)當(dāng)四邊形內(nèi)有4個(gè)點(diǎn)時(shí),最多剪得的三角形個(gè)數(shù)為_(kāi)_____________;

2)你發(fā)現(xiàn)的變化規(guī)律是:四邊形內(nèi)的點(diǎn)每增加1個(gè),最多剪得的三角形增加______個(gè);

3)猜想:當(dāng)四邊形內(nèi)點(diǎn)的個(gè)數(shù)為n時(shí),最多可以剪得_______________個(gè)三角形;像這樣通過(guò)對(duì)簡(jiǎn)單情形的觀察、分析,從特殊到一般地探索這類(lèi)現(xiàn)象的規(guī)律、提出猜想的思想方法稱(chēng)為歸納.

(問(wèn)題拓展)

請(qǐng)你嘗試用歸納的方法探索4+6+8+10+…+2n+(2n+2)的和是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在數(shù)軸上,點(diǎn)A向右移動(dòng)1個(gè)單位得到B,點(diǎn)B向右移動(dòng)(n1)個(gè)單位得到點(diǎn)C,點(diǎn)C向右移動(dòng)(n2)(n為正整數(shù))個(gè)單位得到點(diǎn)D,點(diǎn)AB,CD分別表示有理數(shù)a,b,c,d

(1)當(dāng)n1時(shí),BC兩點(diǎn)的距離為 個(gè)單位,CD兩點(diǎn)的距離為 個(gè)單位;

(2)當(dāng)a=-10n1時(shí),若A,B兩點(diǎn)以2個(gè)單位長(zhǎng)度/秒的速度向右勻速運(yùn)動(dòng),同時(shí)C,D兩點(diǎn)以1個(gè)單位長(zhǎng)度/秒的速度向左勻速運(yùn)動(dòng),并設(shè)運(yùn)動(dòng)時(shí)間為t秒,若AB兩點(diǎn)都運(yùn)動(dòng)在C,D兩點(diǎn)之間(不與C,D兩個(gè)點(diǎn)重合)時(shí),求t的取值范圍;

(3)a,b,c,d四個(gè)數(shù)的積為正數(shù),且這四個(gè)數(shù)的和與其中的兩個(gè)數(shù)的和相等,a為整數(shù).n分別取1,2,3,4……,50時(shí),對(duì)應(yīng)的a的值分貝記為a1,a2a3,……a50,則a1a2a3……a50

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°,以原點(diǎn)A為圓心,適當(dāng)?shù)拈L(zhǎng)為半徑畫(huà)弧,分別交AC,AB于點(diǎn)MN,再分別以點(diǎn)MN為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)E,作射線AEBC于點(diǎn)D,若BD5,AB15,△ABD的面積30,則AC+CD的值是( 。

A. 16B. 14C. 12D. 5+4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過(guò)點(diǎn)A、C、B的拋物線的一部分c1與經(jīng)過(guò)點(diǎn)A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,﹣ ),點(diǎn)M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點(diǎn).

(1)求A、B兩點(diǎn)的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;

(3)當(dāng)△BDM為直角三角形時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖O,AB為直徑OCAB,CDOB交于點(diǎn)FAB的延長(zhǎng)線上有點(diǎn)E,EF=ED

(1)求證DEO的切線;

(2)tanA=,探究線段ABBE之間的數(shù)量關(guān)系,并證明;

(3)在(2)的條件下,OF=1,求圓O的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的面積為1,分別取ACBC兩邊的中點(diǎn)A1、B1,則四邊形A1ABB1的面積為,再分別取A1C、B1C的中點(diǎn)A2B2,取A2C、B2C的中點(diǎn)A3B3,依次取下去利用這一圖形,能直觀地計(jì)算出

A. 1B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知代數(shù)式Ax2+3xyx,B=2x2xy+4y-1

(1)當(dāng)xy=-2時(shí),求2AB的值;

(2)2AB的值與y的取值無(wú)關(guān),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列文字:

我們知道,對(duì)于一個(gè)圖形,通過(guò)兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式,例如由圖1可以得到(a+2b)(a+b)=a2+3ab+2b2.請(qǐng)解答下列問(wèn)題:

(1)寫(xiě)出圖2中所表示的數(shù)學(xué)等式_____;

(2)利用(1)中所得到的結(jié)論,解決下面的問(wèn)題:已知a+b+c=11,ab+bc+ac=38,求a2+b2+c2的值;

(3)圖3中給出了若干個(gè)邊長(zhǎng)為a和邊長(zhǎng)為b的小正方形紙片及若干個(gè)邊長(zhǎng)分別為a、b的長(zhǎng)方形紙片,

請(qǐng)按要求利用所給的紙片拼出一個(gè)幾何圖形,并畫(huà)在圖3所給的方框中,要求所拼出的幾何圖形的面積為2a2+5ab+2b2,

再利用另一種計(jì)算面積的方法,可將多項(xiàng)式2a2+5ab+2b2分解因式.即2a2+5ab+2b2=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案