如圖所示,四邊形ABCD為正方形,△BEF為等腰直角三角形(∠BFE=90°,點B、E、F按逆時針順序),P為DE的中點,連接PC、PF.
(1)如圖(1),E點在邊BC上,則線段PC、PF的數(shù)量關系為______,位置關系為______(不需要證明).
(2)如圖(2),將△BEF繞B點順時針旋轉α°(0<α<45),則線段PC、PF有何數(shù)量關系和位置關系?請寫出你的結論并證明.
(3)如圖(3),E點旋轉到圖中的位置,其它條件不變,完成圖(3),則線段PC、PF有何數(shù)量關系和位置關系?直接寫出你的結論,不需要證明.

【答案】分析:(1)由∠BFE=90°,點P為DE的中點,根據(jù)直角三角形斜邊上的中線等于斜邊的一半得到PF=PD=PE,PC=PD=PE,則PC=PF,又∠FPE=2∠FDP,∠CPE=2∠PDC,得到∠FPC=2∠FDC=90°,所以PC=PF,PC⊥PF.
(2)延長FP至G使PG=PF,連DG,GC,F(xiàn)C,延長EF交BD于N,易得△PDG≌△PEF,得DG=EF=BF,得∠PEF=∠PDG,EN∥DG,可得∠FBC=∠GDC,證得△BFC≌△DGC,則FC=CG,∠BCF=∠DCG.得∠FCG=∠BCD=90°.即有PC⊥PF,PF=PC.
(3)根據(jù)題目要求畫出圖形,由(1)(2)得出結論.
解答:解:(1)∵∠BFE=90°,點P為DE的中點
∴PF=PD=PE,
同理可得PC=PD=PE,
∴PC=PF,
又∵∠FPE=2∠FDP,∠CPE=2∠PDC,
∴∠FPC=2∠FDC=90°,
所以PC=PF,PC⊥PF.
故答案為:相等、垂直;

(2)PC⊥PF,PF=PC.理由如下:
延長FP至G使PG=PF,連DG,GC,F(xiàn)C,延長EF交BD于N,如圖,
∵點P為DE的中點,
∴△PDG≌△PEF,
∴DG=EF=BF.
∴∠PEF=∠PDG,
∴EN∥DG,
∴∠BNE=∠BDG=45°+∠CDG=90°-∠NBF=90°-(45°-∠FBC)
∴∠FBC=∠GDC,
∴△BFC≌△DGC,
∴FC=CG,∠BCF=∠DCG.
∴∠FCG=∠BCD=90°.
∴△FCG為等腰Rt△,
∵PF=PG,
∴PC⊥PF,PF=PC;

(3)畫圖:
線段PC、PF有何數(shù)量關系相等,位置關系垂直.
點評:本題考查了旋轉的性質(zhì):旋轉前后的兩個圖形全等,對應點與旋轉中心的連線段的夾角等于旋轉角,對應點到旋轉中心的距離相等.也考查了正方形的性質(zhì)和三角形全等的判定與性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

21、如圖所示,四邊形ABCD是平行四邊形,E,F(xiàn)分別在AD,CB的延長線上,且DE=BF,連接FE分別交AB,CD于點H,G.
(1)觀察圖中有
2
對全等三角形;
(2)聰明的你如果還有時間,請在上圖中連接AF,CE,你將發(fā)現(xiàn)圖中出現(xiàn)了更多的全等三角形.請在下面的橫線上再寫出兩對與(1)不同的全等三角形(不用證明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,E為AB延長線的上一點,∠CBE=40°,則∠AOC等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD中,E、F分別為AD、BC的中點.
(1)當AB∥CD而AD與BC不平行時,四邊形ABCD稱為
 
形,線段EF叫做其
 
,EF與AB+CD的數(shù)量關系為
 
;
(2)當AB與CD不平行,AD與BC也不平行時,猜想EF與AB+CD的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,四邊形ABCD是正方形,E、F是AB、BC的中點,連接EC交DB、DF于G、H,則EG:GH:HC=
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:新課標 讀想練同步測試 七年級數(shù)學(下) 北師大版 題型:044

如圖所示,四邊形AB-CD中,AB∥CD,P為BC上一點,設∠CDP=α,∠CPD=β,試說明,無論點P在BC上如何移動,總有α+β=∠B.

查看答案和解析>>

同步練習冊答案