(1)解:120;
(2)證明:∵△ABC與△DEC都是等邊三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACD+∠DCB=∠DCB+∠BCE
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)
(3)解:①當(dāng)點(diǎn)D在線段AM上(不與點(diǎn)A重合)時(圖1),
由(2)可知△ACD≌△BCE,
則∠CBE=∠CAD=30°,作CH⊥BE于點(diǎn)H,
則PQ=2HQ,連接CQ,則CQ=5.
在Rt△CBH中,∠CBH=30°,BC=AB=8,則
.
在Rt△CHQ中,由勾股定理得:
,
則PQ=2HQ=6
②當(dāng)點(diǎn)D在線段AM的延長線上時(圖2),
∵△ABC與△DEC都是等邊三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACB+∠DCB=∠DCB+∠DCE
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)
∴∠CEB=∠CDA=30°
同理可得:PQ=6.
③當(dāng)點(diǎn)D在線段MA的延長線上時(圖3),
∵△ABC與△DEC都是等邊三角形
∴AC=BC,CD=CE,∠ACB=∠DCE=60°
∴∠ACD+∠ACE=∠BCE+∠ACE=60°
∴∠ACD=∠BCE
∴△ACD≌△BCE(SAS)
∴∠CBE=∠CAD
∵∠CAM=30°
∴∠CBE=∠CAD=150°
∴∠CBQ=30°
同理可得:PQ=6
綜上所述,PQ的長是6.
分析:(1)三角形內(nèi)角和是180°,等邊三角形的內(nèi)角都相等,所以,其中一個內(nèi)角的度數(shù)是180°÷3,結(jié)合圖形可求得∠ACB=∠DCE=60°,從而可得∠ACE的度數(shù);
(2)根據(jù)等邊三角形的性質(zhì),利用SAS求證△ADC≌△BEC;
(3)①當(dāng)點(diǎn)D在線段AM上(不與點(diǎn)A重合)時,作Rt△CBH,在直角三角形中,利用勾股定理求得;②當(dāng)點(diǎn)D在線段AM的延長線上時,求證△ACD≌△BCE,然后求值;③當(dāng)點(diǎn)D在線段MA的延長線上時,求證△ACD≌△BCE后求值.
點(diǎn)評:本題重點(diǎn)考查了三角形全等的判定定理,普通兩個三角形全等共有四個定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA無法證明三角形全等.