精英家教網 > 初中數學 > 題目詳情
如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E為AB邊上一點,∠BCE=15°,AE=AD.連接DE、AC交于F,連接BF.則有下列4個結論:
①△ACD≌△ACE;②△CDE為等邊三角形;③EF:BE=():2;④S△ECD:S△ECF=EC:EF.
其中正確的結論是( )

A.①②
B.①②④
C.③④
D.①②③④
【答案】分析:先證明△AED與△ABC是等腰直角三角形,再根據SAS即可證明△ACD≌△ACE,從而判斷①;
由①得出CD=CE,再證明∠DEC=60°,即可判斷②;
設EF=x,先解直角△ECF,得出CF=x,則AC=(1+)x,再由△ABC是等腰直角三角形,求出AB,從而可用含x的代數式表示BE,即可判斷③;
由于△ECD與△ECF同高,所以面積之比等于底之比,再根據②可知EC=ED,從而判斷④.
解答:解:①∵∠ABC=90°,AB=BC,
∴∠BAC=∠ACB=45°,
又∵∠BAD=90°,
∴∠DAC=∠BAC,
又AD=AE,AC=AC,
∴△ACD≌△ACE;故①正確;
②同理∠AED=45°,
∠BEC=90°-∠BCE=90°-15°=75°,
∴∠DEC=60°,
∵ACD≌△ACE,
∴CD=CE,
∴△CDE為等邊三角形.故②正確;
③∵AE=AE,△ACD≌△ACE,△CDE是等邊三角形,
∴∠EAF=∠ADF=45°,AD=AE,
∴AF=EF=DF,AF⊥DE.
設AF=EF=DF=x,
∴AE=x,CE=2x,
∴CF=x,
∴AC=(1+)x,
∵AB=BC,
∴AB2+BC2=[(1+)x]2,
解得:AB=x,
BE=AB-AE=x,
∴EF:BE=x:x=():2.故③正確;
④∵S△ECD:S△ECF=(×ED×CF):(×EF×CF)=ED:EF,
又∵△CDE為等邊三角形,EC=ED,
∴S△ECD:S△ECF=EC:EF.故④正確.
故選D.
點評:本題綜合考查直角梯形的性質,等腰直角三角形的性質,全等三角形的判定與性質,等邊三角形的判定與性質,解直角三角形等知識,綜合性較強,難度中等.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

20、如圖,在直角梯形ABCD中,AD∥BC,CD⊥BC,E為BC邊上的點.將直角梯形ABCD沿對角線BD折疊,使△ABD與△EBD重合(如圖中陰影所示).若∠A=130°,AB=4cm,則梯形ABCD的高CD≈
3.1
cm.(結果精確到0.1cm)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F點以2cm/秒的速度在線段AB上由A向B勻速運動,E點同時以1cm/秒的速度在線段BC上由B向C勻速運動,設運動時間為t秒(0<t<5).
(1)求證:△ACD∽△BAC;
(2)求DC的長;
(3)設四邊形AFEC的面積為y,求y關于t的函數關系式,并求出y的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:

(1998•大連)如圖,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE為直徑的⊙O交AB于點F,交CD于點G、H.過點F引⊙O的切線交BC于點N.
(1)求證:BN=EN;
(2)求證:4DH•HC=AB•BF;
(3)設∠GEC=α.若tan∠ABC=2,求作以tanα、cotα為根的一元二次方程.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,點E、F分別是腰AD、BC上的動點,點G在AB上,且四邊形AEFG是矩形.設FG=x,矩形AEFG的面積為y.
(1)求y與x之間的函數關式,并寫出自變量x的取值范圍;
(2)在腰BC上求一點F,使梯形ABCD的面積是矩形AEFG的面積的2倍,并求出此時BF的長;
(3)當∠ABC=60°時,矩形AEFG能否為正方形?若能,求出其邊長;若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,動點P、Q分別從點A、C同時出發(fā),點P以2cm/s的速度向點B移動,點Q以1cm/s的速度向點D移動,當一個動點到達終點時另一個動點也隨之停止運動.
(1)經過幾秒鐘,點P、Q之間的距離為5cm?
(2)連接PD,是否存在某一時刻,使得PD恰好平分∠APQ?若存在,求出此時的移動時間;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案