如圖,四邊形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,設CD的長為x,四邊形ABCD的面積為y,則y與x之間的函數關系式是( ).
A. | B. | C. | D. |
C.
解析試題分析:作AE⊥AC,DE⊥AE,兩線交于E點,作DF⊥AC垂足為F點,
∵∠BAD=∠CAE=90°,即∠BAC+∠CAD=∠CAD+∠DAE
∴∠BAC=∠DAE
又∵AB=AD,∠ACB=∠E=90°
∴△ABC≌△ADE(AAS)
∴BC=DE,AC=AE,
設BC=a,則DE=a,DF=AE=AC=4BC=4a,
CF=AC-AF=AC-DE=3a,
在Rt△CDF中,由勾股定理得,
CF2+DF2=CD2,即(3a)2+(4a)2=x2,
解得:,
∴y=S四邊形ABCD=S梯形ACDE=×(DE+AC)×DF
=×(a+4a)×4a=10a2=.
故選C.
考點: 根據實際問題列二次函數關系式.
科目:初中數學 來源: 題型:單選題
如圖,動點P從點A出發(fā),沿線段AB運動至點B后,立即按原路返回,點P在運動過程中速度不變,則以點B為圓心,線段BP長為半徑的圓的面積S與點P的運動時間t的函數圖象大致為( 。
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數學 來源: 題型:單選題
如圖,二次函數y=ax2+bx+c圖象的一部分,其中對稱軸為x=﹣1,且過(﹣3,0),下列說法:①abc<0,②2a<b,③4a+2b+c=0,④若(﹣5,y1),(5,y2)是拋物線上的點,則y1<y2,其中說法正確的有( 。
A.4個 | B.3個 | C.2個 | D.1個 |
查看答案和解析>>
科目:初中數學 來源: 題型:單選題
已知二次函數y=kx2﹣6x+3,若k在數組(﹣3,﹣2,﹣1,1,2,3,4)中隨機取一個,則所得拋物線的對稱軸在直線x=1的右方時的概率為( 。
A. | B. | C. | D. |
查看答案和解析>>
科目:初中數學 來源: 題型:單選題
已知二次函數中,其函數與自變量之間的部分對應值如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | … |
y | … | 4 | 1 | 0 | 1 | 4 | … |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com