如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(a,0),B(0,b),如果將線段AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°至CB,那么點(diǎn)C的坐標(biāo)是


  1. A.
    (-b,b+a)
  2. B.
    (-b,b-a)
  3. C.
    (-a,b-a)
  4. D.
    (b,b-a)
B
分析:過點(diǎn)C作CD⊥y軸于點(diǎn)D,根據(jù)旋轉(zhuǎn)的性質(zhì)可以證明∠CBD=∠BAO,然后證明△ABO與△BCD全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BD、CD的長(zhǎng)度,然后求出OD的長(zhǎng)度,最后根據(jù)點(diǎn)C在第二象限寫出坐標(biāo)即可.
解答:解:如圖,過點(diǎn)C作CD⊥y軸于點(diǎn)D,
∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,
∴∠CBD=∠BAO,
在△ABO與△BCD中,,
∴△ABO≌△BCD(AAS),
∴CD=OB,BD=AO,
∵點(diǎn)A(a,0),B(0,b),
∴CD=b,BD=a,
∴OD=OB-BD=b-a,
又∵點(diǎn)C在第二象限,
∴點(diǎn)C的坐標(biāo)是(-b,b-a).
故選B.
點(diǎn)評(píng):本題主要考查了旋轉(zhuǎn)的性質(zhì),坐標(biāo)與圖形的關(guān)系,作出輔助線利用全等三角形求出BD、CD的長(zhǎng)度是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案