【題目】(8分)如圖,已知△ABC,AD平分∠BAC交BC于點(diǎn)D,BC的中點(diǎn)為M,ME∥AD,交BA的延長(zhǎng)線于點(diǎn)E,交AC于點(diǎn)F.

(1)求證:AE=AF;

(2)求證:BE=(AB+AC).

【答案】(1)詳見解析;(2)詳見解析.

【解析】

試題分析:(1)根據(jù)角平分線的性質(zhì)及平行線的性質(zhì)易AEF=AFE,即可得AE=AF;(2)作CGEM,交BA的延長(zhǎng)線于G,已知AC=AG,根據(jù)三角形中位線定理的推論證明BE=EG,再利用三角形的中位線定理即可證得結(jié)論.

試題解析:

(1)DA平分BAC,

∴∠BAD=CAD,

ADEM,

∴∠BAD=AEF,CAD=AFE,

∴∠AEF=AFE,

AE=AF.

(2)作CGEM,交BA的延長(zhǎng)線于G.

EFCG,

∴∠G=AEF,ACG=AFE,

∵∠AEF=AFE,

∴∠G=ACG,

AG=AC,

BM=CM.EMCG,

BE=EG,

BE=BG=(BA+AG)=(AB+AC).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)某學(xué)校為了解學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂、戲曲五類電視節(jié)目最喜愛的情況,隨機(jī)調(diào)查了若干名學(xué)生,根據(jù)調(diào)查數(shù)據(jù)進(jìn)行整理,繪制了如下的不完整統(tǒng)計(jì)圖:

請(qǐng)你根據(jù)以上的信息,回答下列問題:

(1) 本次共調(diào)查了_____名學(xué)生,其中最喜愛戲曲的有_____人;在扇形統(tǒng)計(jì)圖中,最喜愛體育的對(duì)應(yīng)扇形的圓心角大小是______;

(2) 根據(jù)以上統(tǒng)計(jì)分析,估計(jì)該校2000名學(xué)生中最喜愛新聞的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若x=﹣1是一元二次方程x2+2x+a=0的一個(gè)根,那么a=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x2﹣2x,用配方法把該函數(shù)化為y=a(x﹣h)2+c的形式,并指出函數(shù)圖象的對(duì)稱軸和頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABCD中,對(duì)角線AC,BD交于點(diǎn)O,AC=8,BD=12,AD的取值范圍是___________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位今年為災(zāi)區(qū)捐款2萬5千元,比去年的2倍還多1000元,去年該單位為災(zāi)區(qū)捐款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程x2+2kx﹣1=0的根的情況描述正確的是(
A.k為任何實(shí)數(shù),方程都沒有實(shí)數(shù)根
B.k為任何實(shí)數(shù),方程都有兩個(gè)不相等的實(shí)數(shù)根
C.k為任何實(shí)數(shù),方程都有兩個(gè)相等的實(shí)數(shù)根
D.k取值不同實(shí)數(shù),方程實(shí)數(shù)根的情況有三種可能

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD的對(duì)角線AC6,BD8,以點(diǎn)A為圓心,AB為半徑作⊙A,則點(diǎn)C與⊙A的位置關(guān)系是(  )

A.點(diǎn)C在⊙A內(nèi)B.點(diǎn)C在⊙AC.點(diǎn)C在⊙AD.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種花卉每盆的盈利與每盆的株數(shù)有一定的關(guān)系,每盆植3株時(shí),平均每株盈利4元;若每盆增加1株,則平均每株盈利減少0.5元.要使每盆的盈利達(dá)到15元,每盆應(yīng)多植多少株?

查看答案和解析>>

同步練習(xí)冊(cè)答案