(1)一元二次方程x2-2x-
5
4
=0
的某個根,也是一元二次方程x2-(k+2)x+
9
4
=0
的根,求k的值.
(2)先化簡,再求值:
2
3
x
9x
-2x2
1
x3
+6x
x
4
,其中x=4.
分析:(1)先求出方程x2-2x-
5
4
=0的解,再將求出的解代入x2-(k+2)x+
9
4
=0中,得到關于k的方程,求出方程的解即可得到k的值;
(2)先將各個二次根式化為最簡二次根式,再合并同類二次根式,然后代入計算即可.
解答:解:解方程x2-2x-
5
4
=0,得:x1=
5
2
,x2=-
1
2

∵x2-(k+2)x+
9
4
=0,
∴△=(k+2)2-9≥0,即k≥1或k≤-5,
①根據(jù)題意,把x=
5
2
代入x2-(k+2)x+
9
4
=0,得:(
5
2
2-
5
2
(k+2)+
9
4
=0,
解得:k=
7
5

②把x=-
1
2
代入x2-(k+2)x+
9
4
=0得:(-
1
2
2+
1
2
(k+2)+
9
4
=0,
解得:k=-7,
綜上所述,k的值為-7或
7
5


(2)原式=
2
3
x•3
x
-2x2
x
x2
+6x•
x
2

=2x
x
-2
x
+6x
x

=(8x-2)
x
,
當x=4時,原式=(8×4-2)
4
=60.
點評:(1)考查了一元二次方程的解法,以及一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值;
(2)考查了二次根式的混合運算,將原式化為最簡是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)y=-x2+bx+c的圖象如圖所示,解決下列問題:
(1)關于x的一元二次方程-x2+bx+c=0的解為
 

(2)求此拋物線的解析式和頂點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程(m-3)xm2-m-4+(2m+1)x-m=0是一元二次方程,則m=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、已知關于x的一元二次方程x2-bx+3=0的一個實數(shù)根為1,則b=
4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、已知一元二次方程ax2+bx+c=0(a≠0)中,下列說法:
①若a+b+c=0,則b2-4ac>0;
②若方程兩根為-1和2,則2a+c=0;
③若方程ax2+c=0有兩個不相等的實根,則方程ax2+bx+c=0必有兩個不相等的實根;
④若b=2a+c,則方程有兩個不相等的實根.其中正確的有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標系中,直線l的解析式為y=
3
3
x
,關于x的一元二次方程2x2-2(m+2)x+(2m+5)=0(m>0)有兩個相等的實數(shù)根.
(1)試求出m的值,并求出經(jīng)過點A(0,-m)和D(m,0)的直線解析式;
(2)在線段AD上順次取兩點B、C,使AB=CD=
3
-1,試判斷△OBC的形狀;
(3)設直線l與直線AD交于點P,圖中是否存在與△OAB相似的三角形?如果存在,請直接寫出;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案