甲、乙兩人分別從相距18公里的A、B兩地同時相向而行,甲以4公里/小時的平均速度步行,乙以每小時比甲快1公里的平均速度步行,相遇而止.
(1)求甲、乙二人相距的距離y(公里)和所用的時間x(小時)的函數(shù)關(guān)系式;
(2)求出函數(shù)圖象與x軸、y軸的交點坐標,畫出函數(shù)的圖象,并求出自變量x的取值范圍;
(3)求當(dāng)甲、乙二人相距6公里時,所需用的時間.

解:(1)∵甲以4公里/小時的平均速度步行,乙以每小時比甲快1公里的平均速度步行,
∴乙以5公里/小時的平均速度步行,
∵甲、乙兩人分別從相距18公里的A、B兩地同時相向而行,
∴甲、乙二人相距的距離y(公里)和所用的時間x(小時)的函數(shù)關(guān)系式:
y=18-(4+5)x=18-9x;

(2)當(dāng)x=0,則y=18,故圖象與y軸交點坐標為:(0,18),
當(dāng)y=0,則x=2,故圖象與x軸交點坐標為:(2,0),
∵0≤y≤18,
∴自變量x的取值范圍為:0≤x≤2;

(3)∵A、B兩地同時相向而行,相遇而止,當(dāng)甲、乙二人相距6公里時,即y=6,
則6=18-9x,
解得:x=,
答:當(dāng)甲、乙二人相距6公里時,所需用的時間為小時.
分析:(1)根據(jù)兩人的速度得出,兩人行駛距離之和+y=18,即可得出函數(shù)關(guān)系式;
(2)根據(jù)(1)中所求得出圖象與x軸、y軸的交點坐標以及自變量的取值范圍,畫出函數(shù)的圖象,即可得出;
(3)根據(jù)已知得出當(dāng)y=6時,求出x的值即可.
點評:此題主要考查了一次函數(shù)的應(yīng)用以及一次函數(shù)與坐標軸交點求法和圖象畫法,利用數(shù)形結(jié)合得出圖象自變量取值范圍是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知甲、乙兩人分別從相距300千米的A,B兩地同時出發(fā)相向而行,甲到B地后立即返回A精英家教網(wǎng)地,乙從B地直接到達A地,下圖是它們離各自出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)圖象.
(1)判斷OAB與OC分別是誰的函數(shù)圖象;
(2)求出甲、乙兩人離各自出發(fā)地的距離y(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系式,并標明自變量x的取值范圍;
(3)它們在行駛的過程中有幾次相遇?并求出每次相遇的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲,乙兩人分別從相距skm的A,B兩地同時出發(fā),若同向而行,則th后甲追上乙;若相向而行,則Th后兩人相遇,則甲的速度與乙的速度之比為( 。
A、
t+T
t
B、
t+1
t
C、
s
t+T
D、
t+T
t-T

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙兩人分別從相距40千米的兩地同時出發(fā),若同向而行,則5小時后,快者追上慢者;若相向而行,則2小時后,兩人相遇,那么快者速度和慢者速度(單位:千米/小時)分別是( 。
A、14和6B、24和16C、28和12D、30和10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

甲、乙兩人分別從相距S千米的A,B兩地同時出發(fā),相向而行,已知甲的速度是每小時m千米,乙的速度是每小時n千米,則經(jīng)過
 
小時兩人相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1997•昆明)甲、乙兩人分別從相距18公里的A、B兩地同時相向而行,甲以4公里/小時的平均速度步行,乙以每小時比甲快1公里的平均速度步行,相遇而止.
(1)求甲、乙二人相距的距離y(公里)和所用的時間x(小時)的函數(shù)關(guān)系式;
(2)求出函數(shù)圖象與x軸、y軸的交點坐標,畫出函數(shù)的圖象,并求出自變量x的取值范圍;
(3)求當(dāng)甲、乙二人相距6公里時,所需用的時間.

查看答案和解析>>

同步練習(xí)冊答案