將兩個(gè)大小不同的含45°角的直角三角板如圖1所示放置在同一平面內(nèi).從圖1中抽象出一個(gè)幾何圖形(如圖2),B、C、E三點(diǎn)在同一條直線上,連接DC.
求證:△ABE≌△ACD.

【答案】分析:題中兩個(gè)三角形均為等腰直角三角形,所以可得其腰相等,再加上一個(gè)角相等,即可證明其全等.
解答:證明:∵△ABC和△ADE均為等腰直角三角形,
∴AB=AC,AD=AE,∠BAC=∠DAE=90,
即∠BAC+∠CAE=∠DAE+∠CAE,
∴∠BAE=∠CAD,
在△ABE和△ACD中,
∴△ABE≌△ACD.
點(diǎn)評(píng):本題考查了全等三角形的判定;熟練掌握全等三角形的判定方法,把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題是一種能力,要注意培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)將兩個(gè)大小不同的含45°角的直角三角板如圖1所示放置在同一平面內(nèi).從圖1中抽象出一個(gè)幾何圖形(如圖2),B、C、E三點(diǎn)在同一條直線上,連接DC.
求證:△ABE≌△ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

將兩個(gè)大小不同的含30°角的三角板的直角頂點(diǎn)O重合在一起,保持△COD不動(dòng),將△AOB繞點(diǎn)O旋轉(zhuǎn),設(shè)射線AB與射線DC交于點(diǎn)F.

(1)如圖①,若∠AOD=120°,
①AB與OD的位置關(guān)系
AB∥OD
AB∥OD

②∠AFC的度數(shù)=
30°
30°

(2)如圖②當(dāng)∠AOD=130°,求∠AFC的度數(shù).
(3)由上述結(jié)果,寫(xiě)出∠AOD和∠AFC的關(guān)系
∠AOD=∠AFC+90°
∠AOD=∠AFC+90°

(4)如圖③,作∠AFC、∠AOD的角平分線交于點(diǎn)P,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

將兩個(gè)大小不同的含45°角的直角三角板如圖1所示放置在同一平面內(nèi).從圖1中抽象出一個(gè)幾何圖形(如圖2),B、C、E三點(diǎn)在同一條直線上,連接DC.
求證:△ABE≌△ACD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:北京期末題 題型:證明題

將兩個(gè)大小不同的含角的直角三角板如圖1所示放置在同一平面內(nèi)。從圖1中抽象出一個(gè)幾何圖形(如圖2),B、C、E三點(diǎn)在同一條直線上,連結(jié)DC,求證:△ABE≌△ACD。

查看答案和解析>>

同步練習(xí)冊(cè)答案