如圖,△ABC中,D、E分別是AB、AC的中點(diǎn),給出下列結(jié)論:
①DE∥BC;②DE=
1
2
BC
;③
AD
AE
=
AB
AC
;④△ADE∽△ABC.
其中正確的結(jié)論有( 。
分析:若D、E是AB、AC的中點(diǎn),則DE是△ABC的中位線,可根據(jù)三角形中位線定理得出的等量條件進(jìn)行判斷.
解答:解:∵D、E是AB、AC的中點(diǎn),
∴DE是△ABC的中位線;
∴DE∥BC,DE=
1
2
BC(故①,②正確),
∵DE∥BC,
∴△ADE∽△ABC;(故④正確)
AE
AC
=
AD
AB
,即
AD
AE
=
AB
AC
;(故③正確)
因此本題的四個(gè)結(jié)論都正確,
故選D.
點(diǎn)評(píng):題主要考查了三角形中位線定理以及相似三角形的判定和性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案