精英家教網 > 初中數學 > 題目詳情

如圖,△ABC 中,AC=BC,∠C=90度,AD平分∠CAB,DE⊥AB,若AB=20厘米,則△DEB的周長為________厘米.

20
分析:由∠C=90度,AD平分∠CAB,DE⊥AB,根據角平分線的性質,可證得CD=DE,繼而可得AC=AE,又由AC=BC,可得AE=BC,繼而可得△DEB的周長等于AB的長.
解答:∵∠C=90°,AD平分∠CAB,DE⊥AB,
∴CD=DE,∠ADC=∠ADE,
∴AE=AC,
∵AC=BC,
∴AE=BC,
∵AB=20厘米,
∴△DEB的周長為:DE+BD+BE=AD+BD+BE=BC+BE=AE+BE=AB=20(厘米).
故答案為:20.
點評:此題考查了角平分線的性質.此題難度適中,注意掌握數形結合思想與轉化思想的應用.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數學 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數學 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數;
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關系,請說明理由.

查看答案和解析>>

同步練習冊答案