如圖,在Rt△ABC中,∠B=90°,BC=5
3
,∠C=30°.點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以每秒2個(gè)單位長(zhǎng)的速度向A點(diǎn)勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE、EF.
(1)AC的長(zhǎng)是
 
,AB的長(zhǎng)是
 

(2)在D、E的運(yùn)動(dòng)過程中,線段EF與AD的關(guān)系是否發(fā)生變化?若不變化,那么線段EF與AD是何關(guān)系,并給予證明;若變化,請(qǐng)說明理由.
(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(4)當(dāng)t為何值,△BEF的面積是2
3
?
考點(diǎn):平行四邊形的判定與性質(zhì),含30度角的直角三角形,勾股定理,菱形的判定
專題:動(dòng)點(diǎn)型
分析:(1)在Rt△ABC中,∠C=30°,則AC=2AB,根據(jù)勾股定理得到AC和AB的值.
(2)先證四邊形AEFD是平行四邊形,從而證得AD∥EF,并且AD=EF,在運(yùn)動(dòng)過程中關(guān)系不變.
(3)求得四邊形AEFD為平行四邊形,若使?AEFD為菱形則需要滿足的條件及求得.
(4)BE=AB-AE=5-t,BF=BC-CF=5
3
-
3
t,從而得到S△BEF=
1
2
×BF×BE=2
3
,然后求得t的值.
解答:(1)解:∵在Rt△ABC中,∠C=30°,
∴AC=2AB,
根據(jù)勾股定理得:AC2-AB2=BC2,
∴3AB2=75,
∴AB=5,AC=10;

(2)EF與AD平行且相等.
證明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,
∴DF=t.
又∵AE=t,
∴AE=DF,
∵AB⊥BC,DF⊥BC,
∴AE∥DF.
∴四邊形AEFD為平行四邊形.
∴EF與AD平行且相等.

(3)解:能;
理由如下:
∵AB⊥BC,DF⊥BC,
∴AE∥DF.
又∵AE=DF,
∴四邊形AEFD為平行四邊形.
∵AB=BC•tan30°=5
3
×
3
3
=5,
∴AC=2AB=10.
∴AD=AC-DC=10-2t.
若使?AEFD為菱形,則需AE=AD,
即t=10-2t,t=
10
3

即當(dāng)t=
10
3
時(shí),四邊形AEFD為菱形.

(4)解:∵在Rt△CDF中,∠A=30°,
∴DF=
1
2
CD,
∴CF=
3
t,
又∵BE=AB-AE=5-t,BF=BC-CF=5
3
-
3
t,
S△BEF=
1
2
×BE×BF=2
3
,
即:
1
2
(5-t)(5
3
-
3
t)=2
3

解得:t=3,t=7(不合題意舍去),
∴t=3.
故當(dāng)t=3時(shí),△BEF的面積為2
3

故答案為:5,10;平行且相等;
10
3
;3.
點(diǎn)評(píng):此題考查了平行四邊形的判定與性質(zhì),以及全等三角形的判定與性質(zhì),熟練掌握平行四邊形的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

Rt△ABC中,∠C=90°,點(diǎn)D、E分別是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若點(diǎn)P在線段AB上,如圖(1)所示,且∠α=50°,則∠1+∠2=
 
°;
(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間有何關(guān)系?
(3)若點(diǎn)P在Rt△ABC斜邊BA的延長(zhǎng)線上運(yùn)動(dòng)(CE<CD),則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

當(dāng)拋物線的解析式中含有字母系數(shù)時(shí),隨著系數(shù)中的字母取值的不同,拋物線的頂點(diǎn)坐標(biāo)也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,所以拋物線頂點(diǎn)坐標(biāo)為(m,2m-1),即x=m③,y=2m-1④.當(dāng)m的值變化時(shí),x,y的值也隨之變化,因而y的值也隨x值的變化而變化.將③代入④,得y=2x-1⑤.可見,不論m取任何實(shí)數(shù),拋物線頂點(diǎn)的縱坐標(biāo)y和橫坐標(biāo)x都滿足關(guān)系式:y=2x-1;
(1)根據(jù)上述閱讀材料提供的方法,確定點(diǎn)(-2m,m-1)滿足的函數(shù)關(guān)系式為
 

(2)根據(jù)閱讀材料提供的方法,確定拋物線y=x2-
2
m
x+1+m+
1
m2
頂點(diǎn)的縱坐標(biāo)y與橫坐標(biāo)x之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

作圖題:如圖,△ABC在平面直角坐標(biāo)系中,每個(gè)小正方形的邊長(zhǎng)均為1,其中點(diǎn)A、B、C的位置分別如圖.(不要求寫作法)
(1)作出△ABC上平移3個(gè)單位得到的△A1B1C1,其中點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A1、B1、C1
(2)作出△ABC關(guān)于直線x=-1對(duì)稱的△A2 B2C2,其中點(diǎn)A、B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A2、B2、C2,并寫出點(diǎn)A2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,這是反映爺爺每天晚飯后從家中出發(fā)去元寶山公園鍛煉的時(shí)間與距離之間關(guān)系的一幅圖.

(1)如圖反映的自變量、因變量分別是什么?
(2)爺爺每天從公園返回用多長(zhǎng)時(shí)間?
(3)爺爺散步時(shí)最遠(yuǎn)離家多少米?
(4)爺爺在公園鍛煉多長(zhǎng)時(shí)間?
(5)計(jì)算爺爺離家后的20分鐘內(nèi)的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知A、B在數(shù)軸上對(duì)應(yīng)的數(shù)分別用a、b 表示,且(
1
2
ab+100)2+|a-20|=0.P是數(shù)軸上的一個(gè)動(dòng)點(diǎn)
(1)在數(shù)軸上標(biāo)出A、B的位置,并求出A、B之間的距離;
(2)數(shù)軸上一點(diǎn)C距A點(diǎn)24個(gè)單位長(zhǎng)度,其對(duì)應(yīng)的數(shù)c滿足|ac|=-ac.當(dāng)P點(diǎn)滿足PB=2PC時(shí),求P點(diǎn)對(duì)應(yīng)的數(shù);
(3)動(dòng)點(diǎn)P從原點(diǎn)開始第一次向左移動(dòng)1個(gè)單位長(zhǎng)度,第二次向右移動(dòng)3個(gè)單位長(zhǎng)度,第三次向左移動(dòng)5個(gè)單位長(zhǎng)度第四次向右移動(dòng)7個(gè)單位長(zhǎng)度,….點(diǎn)P移動(dòng)到與A或B重合的位置嗎?若能,請(qǐng)?zhí)骄康趲状我苿?dòng)是重合;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

現(xiàn)有一副三角板,如圖①中,∠B=90°,∠A=30°;圖②中,∠D=90°,∠F=45°;圖③中,將△DEF的直角邊DE與△ABC的斜邊AC重合在一起,并將△DEF沿AC方向移動(dòng)(移動(dòng)開始時(shí)點(diǎn)D與點(diǎn)A重合).
(1)△DEF在移動(dòng)的過程中,若D、E兩點(diǎn)始終在AC邊上,
①F、C兩點(diǎn)間的距離逐漸
 
;連接FC,∠FCE的度數(shù)逐漸
 
.(填“不變”、“變大”或“變小”)
②∠FCE與∠CFE度數(shù)之和是否為定值,請(qǐng)加以說明;
(2)△DEF在移動(dòng)的過程中,如果D、E兩點(diǎn)在AC的延長(zhǎng)線上,那么∠FCE與∠CFE之間又有怎樣的數(shù)量關(guān)系,請(qǐng)直接寫出結(jié)論;
(3)能否將△DEF移動(dòng)至某位置,使F、C的連線與BC垂直?求出∠CFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡(jiǎn)求值:(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),其中x=-
7
18

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,?ABCD的頂點(diǎn)A、B的坐標(biāo)分別是A(-1,0),B(0,-2),頂點(diǎn)C、D在雙曲線y=
k
x
上,邊AD交y軸于點(diǎn)E,且?BCDE的面積是△ABE面積的8倍,則k=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案