【題目】已知拋物線.

(1)求證:該拋物線與x軸總有交點(diǎn);

(2)若該拋物線與x軸有一個(gè)交點(diǎn)的橫坐標(biāo)大于3且小于5,求m的取值范圍;

(3)設(shè)拋物線軸交于點(diǎn)M,若拋物線與x軸的一個(gè)交點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)恰好是點(diǎn)M,求的值.

【答案】(1)證明見解析;(2);(3)

【解析】

1)本題需先根據(jù)判別式解出無論m為任何實(shí)數(shù)都不小于零,再判斷出物線與x軸總有交點(diǎn).
2)根據(jù)公式法解方程,利用已有的條件,就能確定出m的取值范圍,即可得到結(jié)果.
3)根據(jù)拋物線y=-x2+5-mx+6-m,求出與y軸的交點(diǎn)M的坐標(biāo),再確定拋物線與x軸的兩個(gè)交點(diǎn)關(guān)于直線y=-x的對(duì)稱點(diǎn)的坐標(biāo),列方程可得結(jié)論.

1)證明:∵

∴拋物線與x軸總有交點(diǎn).

2)解:由(1,根據(jù)求根公式可知,

方程的兩根為:

由題意,有

(3)解:令 x = 0, y =

M0

由(2)可知拋物線與x軸的交點(diǎn)為(-1,0)和(,0),

它們關(guān)于直線的對(duì)稱點(diǎn)分別為(0 1)和(0, ),

由題意,可得:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為調(diào)查本校學(xué)生平均每天完成作業(yè)所用時(shí)間的情況,隨機(jī)調(diào)查了50名同學(xué),如圖是根據(jù)調(diào)查所得數(shù)據(jù)繪制的統(tǒng)計(jì)圖的一部分.

請(qǐng)根據(jù)以上信息,解答下列問題:

(1)將統(tǒng)計(jì)圖補(bǔ)充完整;

(2)若該校共有1 800名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計(jì)該校全體學(xué)生平均每天完成作業(yè)所用總時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣2x2+4xx軸交于點(diǎn)O、A,把拋物線在x軸及其上方的部分記為C1,將C1y鈾為對(duì)稱軸作軸對(duì)稱得到C2,C2x軸交于點(diǎn)B,若直線yx+mC1,C2共有3個(gè)不同的交點(diǎn),則m的取值范圍是(

A. 0<m< B. m

C. 0m D. mm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ABAC,ADBC邊的中線,過點(diǎn)ABC的平行線,過點(diǎn)BAD的平行線,兩線交于點(diǎn)E.

1)求證:四邊形ADBE是矩形;

2)連接DE,交AB于點(diǎn)O,若BC=8AO=,求cosAED的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠C=90°,PCB邊上一動(dòng)點(diǎn),連接AP,作PQAPABQ.已知AC=3cm,BC=6cm,設(shè)PC的長度為xcm,BQ的長度為ycm.

小青同學(xué)根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn)對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.

下面是小青同學(xué)的探究過程,請(qǐng)補(bǔ)充完整:

(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測量,分別得到了y的幾組對(duì)應(yīng)值;

x/cm

0

0.5

1.0

1.5

2.0

2.5

3

3.5

4

4.5

5

6

y/cm

0

1.56

2.24

2.51

m

2.45

2.24

1.96

1.63

1.26

0.86

0

(說明:補(bǔ)全表格時(shí),相關(guān)數(shù)據(jù)保留一位小數(shù))

m的值約為多少cm;

(2)在平面直角坐標(biāo)系中,描出以補(bǔ)全后的表格中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y),畫出該函數(shù)的圖象

(3)結(jié)合畫出的函數(shù)圖象,解決問題:

①當(dāng)y>2時(shí),寫出對(duì)應(yīng)的x的取值范圍;

②若點(diǎn)P不與B,C兩點(diǎn)重合,是否存在點(diǎn)P,使得BQ=BP?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,∠ACB90°,OC2BOAC6,點(diǎn)B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).

1)求點(diǎn)A的坐標(biāo);

2)求拋物線的解析式;

3)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過點(diǎn)PPD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PEDE

①求點(diǎn)P的坐標(biāo);

②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:點(diǎn)A(0,4),B(0,﹣6),Cx軸正半軸上一點(diǎn),且滿足∠ACB=45°,則( 。

A. △ABC外接圓的圓心在OC

B. ∠BAC=60°

C. △ABC外接圓的半徑等于5

D. OC=12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(﹣1,0),B0,﹣),C2,0),其對(duì)稱軸與x軸交于點(diǎn)D

1)求二次函數(shù)的表達(dá)式及其頂點(diǎn)坐標(biāo);

2)若Py軸上的一個(gè)動(dòng)點(diǎn),連接PD,求PB+PD的最小值;

3Mx,t)為拋物線對(duì)稱軸上一動(dòng)點(diǎn)

①若平面內(nèi)存在點(diǎn)N,使得以AB,M,N為頂點(diǎn)的四邊形為菱形,則這樣的點(diǎn)N共有   個(gè);

②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某校初中各年級(jí)學(xué)生每天的平均睡眠時(shí)間(單位:h,精確到1h),抽樣調(diào)查了部分學(xué)生,并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)圖中提供的信息,回答下列問題:

1)求出扇形統(tǒng)計(jì)圖中百分?jǐn)?shù)a的值為   ,所抽查的學(xué)生人數(shù)為   

2)求出平均睡眠時(shí)間為8小時(shí)的人數(shù),并補(bǔ)全頻數(shù)直方圖.

3)求出這部分學(xué)生的平均睡眠時(shí)間的眾數(shù)和平均數(shù).

4)如果該校共有學(xué)生1200名,請(qǐng)你估計(jì)睡眠不足(少于8小時(shí))的學(xué)生數(shù).

查看答案和解析>>

同步練習(xí)冊答案