某食品零售店為儀器廠代銷一種面包,未售出的面包可退回廠家,以統(tǒng)計(jì)銷售情況發(fā)現(xiàn),當(dāng)這種面包的單價(jià)定為7角時(shí),每天賣出160個(gè).在此基礎(chǔ)上,這種面包的單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣出20個(gè).考慮了所有因素后該零售店每個(gè)面包的成本是5角. 設(shè)這種面包的單價(jià)為x(角),零售店每天銷售這種面包所獲得的利潤(rùn)為y(角).
(1)用含x的代數(shù)式分別表示出每個(gè)面包的利潤(rùn)與賣出的面包個(gè)數(shù);
(2)求y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)面包單價(jià)定為多少時(shí),該零售店每天銷售這種面包獲得的利潤(rùn)最大?最大利潤(rùn)為多少?
解:(1)每個(gè)面包的利潤(rùn)為(x﹣5)角 賣出的面包個(gè)數(shù)為(300﹣20x)(或[160﹣(x﹣7)×20])
(2)y=(300﹣20x)(x﹣5)=﹣20x2+400x﹣1500
即y=﹣20x2+400x﹣1500
(3)y=﹣20x2+400x﹣1500=﹣20(x﹣10)2+500
∵當(dāng)x=10時(shí),y的最大值為500.
∴當(dāng)每個(gè)面包單價(jià)定為10角時(shí),該零售店每天獲得的利潤(rùn)最大,最大利潤(rùn)為500角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、某食品零售店為儀器廠代銷一種面包,未售出的面包可退回廠家,以統(tǒng)計(jì)銷售情況發(fā)現(xiàn),當(dāng)這種面包的單價(jià)定為7角時(shí),每天賣出160個(gè).在此基礎(chǔ)上,這種面包的單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣出20個(gè).考慮了所有因素后該零售店每個(gè)面包的成本是5角.
設(shè)這種面包的單價(jià)為x(角),零售店每天銷售這種面包所獲得的利潤(rùn)為y(角).
(1)用含x的代數(shù)式分別表示出每個(gè)面包的利潤(rùn)與賣出的面包個(gè)數(shù);
(2)求y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)面包單價(jià)定為多少時(shí),該零售店每天銷售這種面包獲得的利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某食品零售店為儀器廠代銷一種面包,未售出的面包可退回廠家,以統(tǒng)計(jì)銷售情況發(fā)現(xiàn),當(dāng)這種面包的單價(jià)定為7角時(shí),每天賣出160個(gè)。在此基礎(chǔ)上,這種面包的單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣出20個(gè)?紤]了所有因素后該零售店每個(gè)面包的成本是5角。

設(shè)這種面包的單價(jià)為x(角),零售店每天銷售這種面包所獲得的利潤(rùn)為y(角)。

⑴用含x的代數(shù)式分別表示出每個(gè)面包的利潤(rùn)與賣出的面包個(gè)數(shù);

⑵求y與x之間的函數(shù)關(guān)系式;

(3)當(dāng)面包單價(jià)定為多少時(shí),該零售店每天銷售這種面包獲得的利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(24):2.6 何時(shí)獲得最大利潤(rùn)(解析版) 題型:解答題

某食品零售店為儀器廠代銷一種面包,未售出的面包可退回廠家,以統(tǒng)計(jì)銷售情況發(fā)現(xiàn),當(dāng)這種面包的單價(jià)定為7角時(shí),每天賣出160個(gè).在此基礎(chǔ)上,這種面包的單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣出20個(gè).考慮了所有因素后該零售店每個(gè)面包的成本是5角.
設(shè)這種面包的單價(jià)為x(角),零售店每天銷售這種面包所獲得的利潤(rùn)為y(角).
(1)用含x的代數(shù)式分別表示出每個(gè)面包的利潤(rùn)與賣出的面包個(gè)數(shù);
(2)求y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)面包單價(jià)定為多少時(shí),該零售店每天銷售這種面包獲得的利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第2章《二次函數(shù)》中考題集(26):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某食品零售店為儀器廠代銷一種面包,未售出的面包可退回廠家,以統(tǒng)計(jì)銷售情況發(fā)現(xiàn),當(dāng)這種面包的單價(jià)定為7角時(shí),每天賣出160個(gè).在此基礎(chǔ)上,這種面包的單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣出20個(gè).考慮了所有因素后該零售店每個(gè)面包的成本是5角.
設(shè)這種面包的單價(jià)為x(角),零售店每天銷售這種面包所獲得的利潤(rùn)為y(角).
(1)用含x的代數(shù)式分別表示出每個(gè)面包的利潤(rùn)與賣出的面包個(gè)數(shù);
(2)求y與x之間的函數(shù)關(guān)系式;
(3)當(dāng)面包單價(jià)定為多少時(shí),該零售店每天銷售這種面包獲得的利潤(rùn)最大?最大利潤(rùn)為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案