精英家教網 > 初中數學 > 題目詳情
23、某食品零售店為儀器廠代銷一種面包,未售出的面包可退回廠家,以統(tǒng)計銷售情況發(fā)現,當這種面包的單價定為7角時,每天賣出160個.在此基礎上,這種面包的單價每提高1角時,該零售店每天就會少賣出20個.考慮了所有因素后該零售店每個面包的成本是5角.
設這種面包的單價為x(角),零售店每天銷售這種面包所獲得的利潤為y(角).
(1)用含x的代數式分別表示出每個面包的利潤與賣出的面包個數;
(2)求y與x之間的函數關系式;
(3)當面包單價定為多少時,該零售店每天銷售這種面包獲得的利潤最大?最大利潤為多少?
分析:(1)設每個面包的利潤為(x-5)角.
(2)依題意可知y與x的函數關系式.
(3)把函數關系式用配方法可解出x=10時y有最大值.
解答:解:(1)每個面包的利潤為(x-5)角
賣出的面包個數為(300-20x)(或[160-(x-7)×20])(4分)
(2)y=(300-20x)(x-5)=-20x2+400x-1500
即y=-20x2+400x-1500(8分)
(3)y=-20x2+400x-1500=-20(x-10)2+500(10分)
∴當x=10時,y的最大值為500.
∴當每個面包單價定為10角時,該零售店每天獲得的利潤最大,最大利潤為500角.(12分)
點評:求二次函數的最大(。┲涤腥N方法,第一種可由圖象直接得出,第二種是配方法,第三種是公式法,常用的是后兩種方法.本題難度一般.
練習冊系列答案
相關習題

科目:初中數學 來源:同步題 題型:解答題

某食品零售店為儀器廠代銷一種面包,未售出的面包可退回廠家,以統(tǒng)計銷售情況發(fā)現,當這種面包的單價定為7角時,每天賣出160個.在此基礎上,這種面包的單價每提高1角時,該零售店每天就會少賣出20個.考慮了所有因素后該零售店每個面包的成本是5角. 設這種面包的單價為x(角),零售店每天銷售這種面包所獲得的利潤為y(角).
(1)用含x的代數式分別表示出每個面包的利潤與賣出的面包個數;
(2)求y與x之間的函數關系式;
(3)當面包單價定為多少時,該零售店每天銷售這種面包獲得的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

某食品零售店為儀器廠代銷一種面包,未售出的面包可退回廠家,以統(tǒng)計銷售情況發(fā)現,當這種面包的單價定為7角時,每天賣出160個。在此基礎上,這種面包的單價每提高1角時,該零售店每天就會少賣出20個?紤]了所有因素后該零售店每個面包的成本是5角。

設這種面包的單價為x(角),零售店每天銷售這種面包所獲得的利潤為y(角)。

⑴用含x的代數式分別表示出每個面包的利潤與賣出的面包個數;

⑵求y與x之間的函數關系式;

(3)當面包單價定為多少時,該零售店每天銷售這種面包獲得的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(24):2.6 何時獲得最大利潤(解析版) 題型:解答題

某食品零售店為儀器廠代銷一種面包,未售出的面包可退回廠家,以統(tǒng)計銷售情況發(fā)現,當這種面包的單價定為7角時,每天賣出160個.在此基礎上,這種面包的單價每提高1角時,該零售店每天就會少賣出20個.考慮了所有因素后該零售店每個面包的成本是5角.
設這種面包的單價為x(角),零售店每天銷售這種面包所獲得的利潤為y(角).
(1)用含x的代數式分別表示出每個面包的利潤與賣出的面包個數;
(2)求y與x之間的函數關系式;
(3)當面包單價定為多少時,該零售店每天銷售這種面包獲得的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數學 來源:第2章《二次函數》中考題集(26):2.4 二次函數的應用(解析版) 題型:解答題

某食品零售店為儀器廠代銷一種面包,未售出的面包可退回廠家,以統(tǒng)計銷售情況發(fā)現,當這種面包的單價定為7角時,每天賣出160個.在此基礎上,這種面包的單價每提高1角時,該零售店每天就會少賣出20個.考慮了所有因素后該零售店每個面包的成本是5角.
設這種面包的單價為x(角),零售店每天銷售這種面包所獲得的利潤為y(角).
(1)用含x的代數式分別表示出每個面包的利潤與賣出的面包個數;
(2)求y與x之間的函數關系式;
(3)當面包單價定為多少時,該零售店每天銷售這種面包獲得的利潤最大?最大利潤為多少?

查看答案和解析>>

同步練習冊答案