【題目】甲乙兩同學用兩枚質(zhì)地均勻的骰子作游戲,規(guī)則如下:每人隨機擲兩枚骰子一次(若擲出的兩枚骰子摞在一起,則重擲),點數(shù)和大的獲勝;點數(shù)和相同為平局.
根據(jù)上述規(guī)則,解答下列問題;
(1)隨機擲兩枚骰子一次,用列表法求點數(shù)和為8的概率;
(2)甲先隨機擲兩枚骰子一次,點數(shù)和是7,求乙隨機擲兩枚骰子一次獲勝的概率.
(骰子:六個面分別有1、2、3、4、5、6個小圓點的立方塊.點數(shù)和:兩枚骰子朝上的點數(shù)之和)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC 中,點 O 是邊 AC 上一個動點,過 O 作直線 MN∥BC,設 MN 交∠ACB 的平分線于點 E,交∠ACB 的外角平分線于點 F.
(1)求證:OE=OF;
(2)當點 O 在邊 AC 上運動到什么位置時,四邊形 AECF 是矩形?并說明理由.
(3)若 AC 邊上存在點 O,使四邊形 AECF 是正方形,猜想△ABC 的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,將△ABC繞點B順時針旋轉(zhuǎn)角α(0°<α<90°)得△A1BC1,A1B交AC于點E,A1C1分別交AC、BC于D、F兩點.
(1)如圖1,觀察并猜想,在旋轉(zhuǎn)過程中,線段BE與BF有怎樣的數(shù)量關系?并證明你的結(jié)論;
(2)如圖2,當α=30°時,試判斷四邊形BC1DA的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點D在△ABC的邊AC上,要判定△ADB與△ABC相似,添加一個條件,不正確的是( )
A. ∠ABD=∠C B. ∠ADB=∠ABC C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,∠A=60°,AB=10cm,若點M 從點 B 出發(fā)以 2cm/s 的速度向點 A 運動,點 N 從點 A 出發(fā)以 1cm/s 的速度向點 C 運動,設 M、N 分別從點 B、A 同時出發(fā),運動的時間為 ts.
(1)用含 t 的式子表示線段 AM、AN 的長;
(2)當 t 為何值時,△AMN 是以 MN 為底邊的等腰三角形?
(3)當 t 為何值時,MN∥BC?并求出此時 CN 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c經(jīng)過點A(5,)、點B(9,﹣10),與y軸交于點C,點P是直線AC上方拋物線上的一個動點;
(1)求拋物線對應的函數(shù)解析式;
(2)過點P且與y軸平行的直線l與直線BC交于點E,當四邊形AECP的面積最大時,求點P的坐標;
(3)當∠PCB=90°時,作∠PCB的角平分線,交拋物線于點F.
①求點P和點F的坐標;
②在直線CF上是否存在點Q,使得以F、P、Q為頂點的三角形與△BCF相似,若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為6,AD是BC邊上的中線,M是AD上的動點,E是邊AC上一點,若AE=2,則EM+CM的最小值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解方程:(1) ; (2).
【答案】(1)x1 =1 ,x2=; (2) x1 =-1,x2= .
【解析】試題分析:
根據(jù)兩方程的特點,使用“因式分解法”解兩方程即可.
試題解析:
(1)原方程可化為: ,
方程左邊分解因式得: ,
或,
解得: , .
(2)原方程可化為: ,即,
∴,
∴或,
解得: .
【題型】解答題
【結(jié)束】
20
【題目】已知x1,x2是關于x的一元二次方程x2-2(m+1)x+m2+5=0的兩實根.
(1)若(x1-1)(x2-1)=28,求m的值;
(2)已知等腰△ABC的一邊長為7,若x1,x2恰好是△ABC另外兩邊的邊長,求這個三角形的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com