(2013•桂林)如圖,在△ABC中,CA=CB,AD⊥BC,BE⊥AC,AB=5,AD=4,則AE=
3
3
分析:根據(jù)等腰三角形的性質(zhì)可知:兩腰上的高相等所以AD=BE=4,再利用勾股定理即可求出AE的長.
解答:解:∵在△ABC中,CA=CB,AD⊥BC,BE⊥AC,
∴AD=BE=4,
∵AB=5,
∴AE=
AB2-BE2
=3,
故答案為:3.
點評:本題考查了等腰三角形的性質(zhì)以及勾股定理的運用,題目比較簡單.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•桂林)如圖,與∠1是同位角的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•桂林)如圖,已知線段AB=10,AC=BD=2,點P是CD上一動點,分別以AP、PB為邊向上、向下作正方形APEF和PHKB,設正方形對角線的交點分別為O1、O2,當點P從點C運動到點D時,線段O1O2中點G的運動路徑的長是
3
2
3
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•桂林)如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點,且BE=CF,連接AF,DE交于點O.求證:
(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•桂林)如圖,在△ABC中,∠C=90°,∠BAC的平分線AD交BC于D,過點D作DE⊥AD交AB于E,以AE為直徑作⊙O.
(1)求證:點D在⊙O上;
(2)求證:BC是⊙O的切線;
(3)若AC=6,BC=8,求△BDE的面積.

查看答案和解析>>

同步練習冊答案