【題目】如圖,已知點(diǎn)D在△ABC的BC邊上,DE∥AC交AB于E,DF∥AB交AC于F.
(1)求證:AE=DF;
(2)若AD平分∠BAC,試判斷四邊形AEDF的形狀,并說(shuō)明理由.

【答案】
(1)證明:(1)∵DE∥AC,∠ADE=∠DAF,

同理∠DAE=∠FDA,

∵AD=DA,

∴△ADE≌△DAF,

∴AE=DF;


(2)解:若AD平分∠BAC,四邊形AEDF是菱形,

∵DE∥AC,DF∥AB,

∴四邊形AEDF是平行四邊形,

∴∠DAF=∠FDA.

∴AF=DF.

∴平行四邊形AEDF為菱形.


【解析】(1)利用AAS推出△ADE≌△DAF,再根據(jù)全等三角形的對(duì)應(yīng)邊相等得出AE=DF;(2)先根據(jù)已知中的兩組平行線,可證四邊形DEFA是,再利用AD是角平分線,結(jié)合AE∥DF,易證∠DAF=∠FDA,利用等角對(duì)等邊,可得AE=DF,從而可證AEDF實(shí)菱形.
【考點(diǎn)精析】本題主要考查了菱形的判定方法的相關(guān)知識(shí)點(diǎn),需要掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:|2﹣ |+( ﹣2016)0+2cos30°+( 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直角三角形AOB的頂點(diǎn)A、B分別落在坐標(biāo)軸上.O為原點(diǎn),點(diǎn)A的坐標(biāo)為(6,0),點(diǎn)B的坐標(biāo)為(0,8).動(dòng)點(diǎn)M從點(diǎn)O出發(fā).沿OA向終點(diǎn)A以每秒1個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā),沿AB向終點(diǎn)B以每秒 個(gè)單位的速度運(yùn)動(dòng).當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)動(dòng)點(diǎn)M、N運(yùn)動(dòng)的時(shí)間為t秒(t>0).

(1)當(dāng)t=3秒時(shí),直接寫(xiě)出點(diǎn)N的坐標(biāo);
(2)在此運(yùn)動(dòng)的過(guò)程中,△MNA的面積是否存在最大值?若存在,請(qǐng)求出最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)t為何值時(shí),△MNA是一個(gè)等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一種某小區(qū)的兩幢10層住宅樓間的距離為AC=30m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3m.假設(shè)某一時(shí)刻甲樓在乙樓側(cè)面的影長(zhǎng)EC=h,太陽(yáng)光線與水平線的夾角為α.
(1)用含α的式子表示h(不必指出α的取值范圍);
(2)當(dāng)α=30°時(shí),甲樓樓頂B點(diǎn)的影子落在乙樓的第幾層?若α每小時(shí)增加15°,從此時(shí)起幾小時(shí)后甲樓的影子剛好不影響乙樓采光?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算: +(π﹣3.14)0﹣tan60°+|1﹣ |.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】
(1)計(jì)算:( 1+|3tan30°﹣1|﹣(π﹣3)0;
(2)先化簡(jiǎn),再求值: ,其中x= ﹣3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=x2﹣3x+m(m為常數(shù))的圖象與x軸的一個(gè)交點(diǎn)為(1,0),則關(guān)于x的一元二次方程x2﹣3x+m=0的兩實(shí)數(shù)根是(
A.x1=1,x2=﹣1
B.x1=1,x2=2
C.x1=1,x2=0
D.x1=1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,經(jīng)過(guò)點(diǎn)B(﹣2,0)的直線y=kx+b與直線y=4x+2相交于點(diǎn)A(﹣1,﹣2),則不等式4x+2<kx+b<0的解集為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,△COD關(guān)于CD的對(duì)稱圖形為△CED.

(1)求證:四邊形OCED是菱形;
(2)連接AE,若AB=6cm,BC= cm.
①求sin∠EAD的值;
②若點(diǎn)P為線段AE上一動(dòng)點(diǎn)(不與點(diǎn)A重合),連接OP,一動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以1cm/s的速度沿線段OP勻速運(yùn)動(dòng)到點(diǎn)P,再以1.5cm/s的速度沿線段PA勻速運(yùn)動(dòng)到點(diǎn)A,到達(dá)點(diǎn)A后停止運(yùn)動(dòng),當(dāng)點(diǎn)Q沿上述路線運(yùn)動(dòng)到點(diǎn)A所需要的時(shí)間最短時(shí),求AP的長(zhǎng)和點(diǎn)Q走完全程所需的時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案