【題目】某工廠(chǎng)計(jì)劃生產(chǎn)A,B兩種產(chǎn)品共10件,其生產(chǎn)成本和利潤(rùn)如下表:

A種產(chǎn)品

B種產(chǎn)品

成本(萬(wàn)元∕件)

3

5

利潤(rùn)(萬(wàn)元∕件)

1

2


(1)若工廠(chǎng)計(jì)劃獲利14萬(wàn)元,問(wèn)A,B兩種產(chǎn)品應(yīng)分別生產(chǎn)多少件?
(2)若工廠(chǎng)投入資金不多于44萬(wàn)元,且獲利多于14萬(wàn)元,問(wèn)工廠(chǎng)有哪幾種生產(chǎn)方案?
(3)在(2)條件下,哪種方案獲利最大?并求最大利潤(rùn).

【答案】
(1)解:設(shè)A種產(chǎn)品x件,B種為(10﹣x)件,

x+2(10﹣x)=14,解得x=6,

A生產(chǎn)6件,B生產(chǎn)4件;


(2)解:設(shè)A種產(chǎn)品x件,B種為(10﹣x)件,

,

3≤x<6.

方案一:A生產(chǎn)3件 B生產(chǎn)7件;

方案二:A生產(chǎn)4件,B生產(chǎn)6件;

方案三:A生產(chǎn)5件,B生產(chǎn)5件


(3)解:第一種方案獲利最大.

設(shè)A種產(chǎn)品x件,所獲利潤(rùn)為y萬(wàn)元,

∴y=x+2(10﹣x)=﹣x+20,

∵k=﹣1<0,

∴y隨x的增大而減小,

∴當(dāng)x=3時(shí),獲利最大,

∴3×1+7×2=17,

最大利潤(rùn)是17萬(wàn)元


【解析】(1)設(shè)A種產(chǎn)品x件,B種為(10﹣x)件,根據(jù)共獲利14萬(wàn)元,列方程求解.(2)設(shè)A種產(chǎn)品x件,B種為(10﹣x)件,根據(jù)若工廠(chǎng)投入資金不多于44萬(wàn)元,且獲利多于14萬(wàn)元,列不等式組求解.(3)從利潤(rùn)可看出B越多獲利越大.
【考點(diǎn)精析】本題主要考查了一元一次不等式組的應(yīng)用的相關(guān)知識(shí)點(diǎn),需要掌握1、審:分析題意,找出不等關(guān)系;2、設(shè):設(shè)未知數(shù);3、列:列出不等式組;4、解:解不等式組;5、檢驗(yàn):從不等式組的解集中找出符合題意的答案;6、答:寫(xiě)出問(wèn)題答案才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了貫徹落實(shí)市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送152箱魚(yú)苗到A、B兩村養(yǎng)殖,若用大小貨車(chē)共15輛,則恰好能一次性運(yùn)完這批魚(yú)苗,已知這兩種大小貨車(chē)的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:

目的地
車(chē)型

A村(元/輛)

B村(元/輛)

大貨車(chē)

800

900

小貨車(chē)

400

600


(1)求這15輛車(chē)中大小貨車(chē)各多少輛?
(2)現(xiàn)安排其中10輛貨車(chē)前往A村,其余貨車(chē)前往B村,設(shè)前往A村的大貨車(chē)為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.
(3)在(2)的條件下,若運(yùn)往A村的魚(yú)苗不少于100箱,請(qǐng)你寫(xiě)出使總費(fèi)用最少的貨車(chē)調(diào)配方案,并求出最少費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年6月份,我市某果農(nóng)收獲荔枝30噸,香蕉13噸,現(xiàn)計(jì)劃租用甲、乙兩種貨車(chē)共10輛將這批水果全部運(yùn)往深圳,已知甲種貨車(chē)可裝荔枝4噸和香蕉1噸,乙種貨車(chē)可裝荔枝香蕉各2噸;

(1)該果農(nóng)安排甲、乙兩種貨車(chē)時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái);
(2)若甲種貨車(chē)每輛要付運(yùn)輸費(fèi)2000元,乙種貨車(chē)每輛要付運(yùn)輸費(fèi)1300元,則該果農(nóng)應(yīng)選擇哪種方案使運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線(xiàn)EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長(zhǎng);

(2)如圖2,動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動(dòng)一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動(dòng)過(guò)程中,
①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動(dòng)時(shí)間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時(shí),求t的值.
②若點(diǎn)P、Q的運(yùn)動(dòng)路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿(mǎn)足的數(shù)量關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列圖形中,既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形的是(
A.直角三角形
B.正五邊形
C.正方形
D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC與△DEF均為等邊三角形,O為BC、EF的中點(diǎn),則AD:BE的值為(
A. :1
B. :1
C.5:3
D.不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線(xiàn)y=ax2+bx+c(a≠0)的頂點(diǎn)為C(1,4),交x軸于A(yíng)、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0).

(1)求拋物線(xiàn)的解析式;
(2)如圖2,過(guò)點(diǎn)A的直線(xiàn)與拋物線(xiàn)交于點(diǎn) E,交y軸于點(diǎn)F,其中點(diǎn)E的橫坐標(biāo)為2,若直線(xiàn)PQ為拋物線(xiàn)的對(duì)稱(chēng)軸,點(diǎn)G為直線(xiàn) PQ上的一動(dòng)點(diǎn),則x軸上是否存在一點(diǎn)H,使D、G,H、F四點(diǎn)所圍成的四邊形周長(zhǎng)最?若存在,求出這個(gè)最小值及點(diǎn)G、H的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖3,在拋物線(xiàn)上是否存在一點(diǎn)T,過(guò)點(diǎn)T作x軸的垂線(xiàn),垂足為點(diǎn)M,過(guò)點(diǎn)M作MN∥BD,交線(xiàn)段AD于點(diǎn)N,連接MD,使△DNM∽△BMD?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解該校七年級(jí)學(xué)生的身高情況,抽樣調(diào)查了部分同學(xué),將所得數(shù)據(jù)處理后,制成扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖(部分)如下(每組只含最低值不含最高值,身高單位:cm,測(cè)量時(shí)精確到1cm):

(1)請(qǐng)根據(jù)所提供的信息計(jì)算身高在160~165cm范圍內(nèi)的學(xué)生人數(shù),并補(bǔ)全頻數(shù)分布直方圖;
(2)樣本的中位數(shù)在統(tǒng)計(jì)圖的哪個(gè)范圍內(nèi)?
(3)如果上述樣本的平均數(shù)為157cm,方差為0.8;該校八年級(jí)學(xué)生身高的平均數(shù)為159cm,方差為0.6,那么(填“七年級(jí)”或“八年級(jí)”)學(xué)生的身高比較整齊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,港口B位于港口A(yíng)的南偏東37°方向,燈塔C恰好在A(yíng)B的中點(diǎn)處,一艘海輪位于港口A(yíng)的正南方向,港口B的正西方向的D處,它沿正北方向航行5km到達(dá)E處,測(cè)得燈塔C在北偏東45°方向上,這時(shí),E處距離港口A(yíng)有多遠(yuǎn)?(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

同步練習(xí)冊(cè)答案