【題目】如圖,已知四邊形ABCD是矩形,把矩形沿直線AC折疊,點B落在點E處,連接DE.若DE:AC=3:5,則 的值為(
A.
B.
C.
D.

【答案】A
【解析】解:∵矩形沿直線AC折疊,點B落在點E處,

∴∠BAC=∠EAC,AE=AB=CD,

∵矩形ABCD的對邊AB∥CD,

∴∠DCA=∠BAC,

∴∠EAC=∠DCA,

設AE與CD相交于F,則AF=CF,

∴AE﹣AF=CD﹣CF,

即DF=EF,

= ,

又∵∠AFC=∠EFD,

∴△ACF∽△EDF,

= =

設DF=3x,F(xiàn)C=5x,則AF=5x,

在Rt△ADF中,AD= = =4x,

又∵AB=CD=DF+FC=3x+5x=8x,

= =

故選A.

首先設AE與CD相交于F,根據(jù)折疊的性質可得△ACF、△DEF是等腰三角形,繼而證得△ACF∽△EDF,然后由相似三角形的對應邊成比例,求得DF:FC=3:5,再設DF=3x,F(xiàn)C=5x,即可求得AB,繼而求得答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=AC,BE⊥AC于點E,CF⊥AB于點F,BE、CF相交于點D,則①△ABE≌△ACF;②△BDF≌△CDE;③點D在∠BAC的平分線上.以上結論正確的是(
A.①
B.②
C.①②
D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù)y=kx﹣k與 在同一坐標系中的大致圖象是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,P是等邊三角形ABC內的一點,連結PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連結CQ.若PA∶PB∶PC=3∶4∶5,連結PQ,試判斷△PQC的形狀(

A. 直角三角形 B. 等腰三角形 C. 銳角三角形 D. 鈍角三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道:分式和分數(shù)有著很多的相似點.如類比分數(shù)的基本性質,我們得到了分式的基本性質;類比分數(shù)的運算法則,我們得到了分式的運算法則;等等.小學里,把分子比分母小的分數(shù)叫做真分數(shù).類似地,我們把分子整式的次數(shù)小于分母整式的次數(shù)的分式稱為真分式;反之,稱為假分式.任何一個假分式都可以化成整式與真分式的和的形式,如: ;

(1)下列分式中,屬于真分式的是:________(填序號);

(2)將假分式化成整式與真分式的和的形式: ________________;

(3)將假分式化成整式與真分式的和的形式: __________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解我市某中學九年級學生的體能情況,在該校800名九年級學生中隨機抽取了部分學生進行引體向上測試,現(xiàn)對這部分學生引體向上的次數(shù)進行統(tǒng)計,并繪制成如圖所示的頻數(shù)分布直方圖.

(1)求共抽取了多少名學生進行引體向上測試?

(2)試估計該校九年級學生引體向上次數(shù)不低于5次的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=4,∠AMN=40°,點B為弧AN的中點,點P是直徑MN上的一個動點,則PA+PB的最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某生物興趣小組在四天的試驗研究中發(fā)現(xiàn):駱駝的體溫會隨外部環(huán)境溫度的變化而變化,而且在這四天中每晝夜的體溫變化情況相同.他們將一頭駱駝前兩晝夜的體溫變化情況繪制成如圖所示的圖象,請根據(jù)圖象完成下列問題:

(1)第一天中,在什么時間范圍內這頭駱駝的體溫是上升的?它的體溫從最低上升到最高需要多長時間?

(2)第三天12時這頭駱駝的體溫是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD的邊長為2,∠A=60°,一個以點B為頂點的60°角繞點B旋轉,這個角的兩邊分別與線段AD的延長線及CD的延長線交于點P、Q,設DP=x,DQ=y,則能大致反映y與x的函數(shù)關系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案