【題目】在平面直角坐標(biāo)系中,直線與軸交于點,如圖,作正方形,點在直線上,點在軸上,將圖中陰影部分三角形的面積從左到右依次記為,則
(1)的值為___________;
(2)的值為___________.(含的代數(shù)式表示,為正整數(shù))
【答案】
【解析】
結(jié)合正方形的性質(zhì)結(jié)合直線的解析式可得出:A2B1=OC1,A3B2=C1C2,A4B3=C2C3,…,結(jié)合三角形的面積公式即可得出:,,,…,根據(jù)面積的變化可找出變化規(guī)律(n為正整數(shù)),依此規(guī)律即可得出結(jié)論.
解:令一次函數(shù)中,則,
∴點A1的坐標(biāo)為(0,2),OA1=2.
∵四邊形AnBnCnCn-1(n為正整數(shù))均為正方形,
∴OA1=A1B1= B1C1=OC1=2,
令一次函數(shù)中x=2,則y=4,
即A2C1=4,
∴A2B1=A2C1- B1C1=4-2=2=A1B1,
∴tan∠A2A1B1=1,
∵AnCn-1⊥x軸,
∴tan∠An+1AnBn=1.
∴A2B1=OC1,A3B2=C1C2,A4B3=C2C3,…,
∴,
∴,,…,
∴,(n為正整數(shù)),
故答案為:(1);(2).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的半圓O交AC于點D,且點D為AC的中點,DE⊥BC于點E,AE交半圓O于點F,BF的延長線交DE于點G.
(1)求證:DE為半圓O的切線;
(2)若GE=1,BF=,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是( 。
A. 3cm B. cm C. 2.5cm D. cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對實數(shù)a,b定義新運(yùn)算“”
例如:
(1)化簡_________.
(2)化簡_________.
(3)化簡.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,D、E分別是AB、BC的中點,F在CA延長線上,∠FDA=∠B,AC=6,AB=8,則四邊形AEDF的周長為( 。
A. 16 B. 20 C. 18 D. 22
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一種新型產(chǎn)品,每件成本為元.產(chǎn)品按質(zhì)量分為個等級(每個月能生產(chǎn)同等級的產(chǎn)品),第一等級(最低等級)的產(chǎn)品能生產(chǎn)萬件,每件以元銷售.每提搞一個等級,每件銷售單價就提高元,但產(chǎn)量減少萬件.設(shè)生產(chǎn)該商品的質(zhì)為第等級(為整數(shù),且),產(chǎn)品的月總利潤為元.
(1)求與之間的函數(shù)關(guān)系式;
(2)生產(chǎn)該產(chǎn)品的質(zhì)量為第幾等級時,月總利潤最大,最大利潤是多少?
(3)該商品在生產(chǎn)過程中,共有幾個等級的產(chǎn)品銷售的利潤不低于萬元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)、問題:如圖1,在四邊形ABCD中,點P為AB上一點,∠DPC=∠A=∠B=90°.求證:AD·BC=AP·BP.
(2)、探究:如圖2,在四邊形ABCD中,點P為AB上一點,當(dāng)∠DPC=∠A=∠B=θ時,上述結(jié)論是否依然成立?說明理由.
(3)、應(yīng)用:請利用(1)(2)獲得的經(jīng)驗解決問題:
如圖3,在△ABD中,AB=6,AD=BD=5.點P以每秒1個單位長度的速度,由點A 出發(fā),沿邊AB向點B運(yùn)動,且滿足∠DPC=∠A.設(shè)點P的運(yùn)動時間為t(秒),當(dāng)DC的長與△ABD底邊上的高相等時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點,四邊形是正方形,作直線與正方形邊所在直線相交于
(1)若直線經(jīng)過點,求的值;
(2)若直線平分正方形的面積,求的坐標(biāo);
(3)若的外心在其內(nèi)部,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,CF⊥AB于點F,過點D作DE⊥BC的延長線于點E,且CF=DE.
(1)求證:△BFC≌△CED;
(2)若∠B=60°,AF=5,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com